http://iet.metastore.ingenta.com
1887

Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel

Free-space optical communication employing subcarrier modulation and spatial diversity in atmospheric turbulence channel

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An expression for the bit error rate of a multiple subcarrier intensity-modulated atmospheric optical communication system employing spatial diversity is derived. Spatial diversity is used to mitigate scintillation caused by atmospheric turbulence, which is assumed to obey log-normal distribution. Optimal but complex maximum ratio, equal gain combining (EGC) and relatively simple selection combining spatial diversity techniques in a clear atmosphere are considered. Each subcarrier is modulated using binary phase shift keying. Laser irradiance is subsequently modulated by a subcarrier signal, and a direct detection PIN receiver is employed (i.e. intensity modulation/direction detection). At a subcarrier level, coherent demodulation is used to extract the transmitted data/information. The performance of on–off-keying is also presented and compared with the subcarrier intensity modulation under the same atmospheric conditions.

References

    1. 1)
      • H. Willebrand , B.S. Ghuman . (2002) Free space optics: enabling optical connectivity in today's network.
    2. 2)
      • D. Kedar , S. Arnon . Optical wireless communication through fog in the presence of pointing errors. Appl. Opt. , 4946 - 4954
    3. 3)
      • Kamalakis, T., Sphicopoulos, T., Sheikh Muhammad, S., Leitgeb, E.: `Estimation of power scintillation statistics in free space optical links using the multi canonical Monte Carlo method', IEEE Int. symp. on communication systems, networks and digital signal processing (CSNDSP, 2006), July 2006, Patras, Greece, p. 629–633.
    4. 4)
      • J.T. Li , M. Uysal . Optical wireless communications: system model, capacity and coding. Vehicular Technol. Conf. , 168 - 172
    5. 5)
      • M. Uysal , J.T. Li , M. Yu . Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels. IEEE Trans. Wireless Commun. , 1229 - 1233
    6. 6)
      • Korevaar, E., Kim, I.I., McArthur, B.: `Atmospheric propagation characteristics of highest importance to commercial free space optics', , MRV Communications white paper: available at http://www.mrv.com/library/library.php?view=wp. Accessed July 2007.
    7. 7)
      • W.K. Pratt . (1969) Laser communication systems.
    8. 8)
      • R.M. Gagliardi , S. Karp . (1988) Optical communications.
    9. 9)
      • S. Bloom , E. Korevaar , J. Schuster , H. Willebrand . Understanding the performance of free-space optics. J. Opt. Netw. , 178 - 200
    10. 10)
      • X. Lu , J.M. Kahn . Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. , 1293 - 1300
    11. 11)
      • T. Ohtsuki . Multiple-subcarrier modulation in optical wireless communications. IEEE Commun. Mag. , 74 - 79
    12. 12)
      • I.B. Djordjevic , B. Vasic . 100-Gb/s transmission using orthogonal frequency -division multiplexing. IEEE Photonics technol. lett. , 1576 - 1578
    13. 13)
      • E.J. Lee , V.W.S. Chan . Optical communications over the clear turbulent channel using diversity. IEEE J. Select. Areas Commun. , 1896 - 1906
    14. 14)
      • G.R. Osche . (2002) Optical detection theory for laser applications.
    15. 15)
      • J.W. Goodman . (1984) Statistical Optics.
    16. 16)
      • Yuksel, H.: `Studies of the effects of atmospheric turbulence on free space optical communications in Electrical and Computer Engineering', 2005, PhD, University of Maryland, College ParkUSA.
    17. 17)
      • J.G. Proakis . (1995) Digital communications.
    18. 18)
      • R. You , J.M. Kahn . Average power reduction techniques for multi-subcarrier intensity-modulated optical signals. IEEE Trans. commun. , 2164 - 2171
    19. 19)
      • I.B. Djordjevic , B. Vasic , M.A. Neifeld . LDPC coded OFDM over the atmospheric turbulence channel. Opt. Express , 6336 - 6350
    20. 20)
      • S. Teramoto , T. Ohtsuki . Multiple-subcarier optical communication systems with subcarrier signal-point sequence. IEEE Trans. Commun. , 1738 - 1743
    21. 21)
      • M.K. Simon , M.S. Alouini . (2005) Digital communication over fading channels.
    22. 22)
      • M. Abramowitz , I.S. Stegun . (1977) Handbook of mathematical functions with formulars, graphs and mathematical tables.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt_20070030
Loading

Related content

content/journals/10.1049/iet-opt_20070030
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address