Use of return-to-zero formats in electrical dispersion compensated optical single sideband transmission systems

Use of return-to-zero formats in electrical dispersion compensated optical single sideband transmission systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The use of return-to-zero (RZ) formats is proposed to enhance the dispersion tolerance of intensity-modulated carrier-unsuppressed (IM-CUs) optical single sideband (oSSB) systems. The performance of these systems, employing electrical dispersion compensation (EDC), is accessed using unipolar and polar RZ signalling formats, and compared with common non-return-to-zero (NRZ). Simulation results at 10.7 Gb/s reveal that oSSB systems with EDC using both NRZ and unipolar RZ signalling formats are limited to low extinction ratio (ER) values. However, the use of polar RZ allows increased ER and transmission distances, because of higher inter-symbol interference tolerance and the absence of discrete spectral tones. Considering a minimum ER of 9 dB and resort to forward error correction schemes, polar RZ allows single-channel error free transmission over 1400 km of standard single‐mode fibre, substantially improving the 980 km obtained for NRZ with ER of 6 dB. Dense wavelength‐division multiplexing transmission was also assessed, retrieving improved resilience of IM-CUs oSSB polar RZ.


    1. 1)
    2. 2)
      • Griffin, R.A., Carter, A.C.: `Optical differential quadrature phase-shift key (oDQPSK) for high capacity optical transmission', Proc. OFC, 2002, Anaheim, CA, p. 367–368.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • Takano, K., Murakami, T., Nakagawa, K.: `Mitigation of SPM effect by using Manchester code on optical BPSK-SSB transmission', OTuK2, Proc. OFC/NOFC 2006, 2005, Anaheim.
    7. 7)
    8. 8)
      • R.I. Killey , P.M. Watts , V. Mikhailov , M. Glick , P. Bayvel . Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach–Zehnder modulator. IEEE Photon. Technol. Lett. , 3 , 714 - 716
    9. 9)
      • McNicol, J., O'Sullivan, M., Roberts, K., Comeau, A., McGhan, D., Strawczynski, L.: `Electrical domain compensation of optical dispersion', Proc. OFC/NOFC 2005, 2005, Anaheim, 4, p. 269–271.
    10. 10)
    11. 11)
      • Silveira, T., Ferreira, A., Monteiro, P., Violas, M., Ribeiro, R., Rocha, F.: `Electrical dispersion compensation at 10 Gb/s optical single sideband transmission systems', Proc. LEOS, 2004, Puerto Rico, p. 759–760.
    12. 12)
      • Watts, P.M., Mikhailov, V., Glick, M., Bayvel, P., Killey, R.I.: `Performance of optical single sideband signal transmission systems using adaptive electronic dispersion compensators', Proc. ECOC, September 2005, Glasgow, UK, 2, p. 259–260.
    13. 13)
      • Ferreira, A., Silveira, T., Ribeiro, R., Monteiro, P., Violas, M., Teixeira, A.: `Mitigation of chromatic dispersion effects on optical single sideband signals by Butterworth filtering', Proc. ICTON, 2005, Barcelona, Spain, 2, p. 76–79.
    14. 14)
    15. 15)
    16. 16)
      • Maia, T., Ribeiro, R., Monteiro, P.: `Impact of the modulation depth on self-homodyne optical single sideband systems', Proc. LEOS, 2001, San Diego, CA, 2, p. 675–676.
    17. 17)
      • P. Vijay , M. Win , H. Lu , C. Georghiades , I. Kaminow , T. Li . (2002) Error-control coding techniques and applications, Optical Fiber Telecommunications IV B: Systems and Impairments.
    18. 18)
      • J.L. Rebola , A.V.T. Cartaxo . Gaussian approach for performance evaluation of optically preamplified receivers with arbitrary optical and electrical filters. Proc. Inst. Elect. Eng. Part J – Optoelectron. , 3 , 135 - 142
    19. 19)
      • Optical transport network physical layer interfaces, Standard ITU-T G.959.1, 2003.
    20. 20)
      • A.B. Carlson , P.B. Crilly , J.C. Rutledge . (2002) Communication Systems, an introduction to signals and noise in electrical communication.
    21. 21)
      • F. Stremler . (1990) Introduction to Communication Systems.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • Fonseca, D., Monteiro, P., Cartaxo, A., Fujita, M.: `Single sideband demonstration using a four phase-modulators structure', Proc. IEEE/LEOS Adv. Modulation Formats Workshop, July 2004, San Francisco, CA, p. 41–42.

Related content

This is a required field
Please enter a valid email address