access icon free Gain-flattened hybrid EDFA operating in C + L band with parallel pumping distribution technique

A novel C + L band hybrid erbium-doped fibre amplifier (EDFA) using a two-stage configuration was proposed and demonstrated experimentally. The amplifier is composed of a 0.5-m long hafnium bismuth erbium co-doped fibre (EDF) to provide gain within the C-band and a 4-m long zirconia-based EDF to provide gain within the L-band. The proposed amplifier was examined based on the multi-wavelength input source. A parallel pumping distribution technique was used to mitigate the amplifier complexity. The C + L band amplifier achieved a gain flattening of over 55 nm bandwidth for the three levels of the input powers. A gain-flattening of roughly 10.9, 15.5, and 19.2 dB were obtained, respectively, for the input signal powers of −5, −10, and −15 dBm. An average noise figure of 6.4, 5.4, and 4.7 dB was achieved, respectively, for the input signal powers of −5, −10, and −15 dBm.

Inspec keywords: optical pumping; hafnium; bismuth; optical fibre amplifiers; laser noise; erbium; zirconium compounds

Other keywords: gain 10.9 dB; C + L band hybrid erbium-doped fibre amplifier; noise figure; size 4 m; gain 19.2 dB; gain 15.5 dB; multiwavelength input source; two-stage configuration; 0.5-m long hafnium bismuth erbium codoped fibre; parallel pumping distribution technique; amplifier complexity; gain-flattened hybrid EDFA; size 0.5 m; zirconia-based EDF; input signal powers; noise figure 6.4 dB; ZrO2; noise figure 4.7 dB; noise figure 5.4 dB

Subjects: Design of specific laser systems; Fibre lasers and amplifiers; Fibre lasers and amplifiers

References

    1. 1)
      • 41. Zhou, X., Birk, M., Woodward, S.: ‘Pump-noise induced FWM effect and its reduction in a distributed Raman fiber amplifier’, IEEE Photonics Technol. Lett., 2002, 14, (12), pp. 16861688.
    2. 2)
      • 36. Jiang, H., Zhang, L., Feng, Y.: ‘Cascaded-cladding-pumped cascaded Raman fiber amplifier’, Opt. Express, 2015, 23, (11), pp. 1394713952.
    3. 3)
      • 38. Mahran, O., Aly, M.H.: ‘Performance characteristics of dual-pumped hybrid EDFA/Raman optical amplifier’, Appl. Opt., 2016, 55, (1), pp. 2226.
    4. 4)
      • 8. Hsu, H.-Y., Yu, Y.-L., Liaw, S.-K., et al: ‘Theoretical and experimental study of multifunction C + L band hybrid fiber amplifiers’, Opt. Laser Technol., 2014, 56, pp. 307312.
    5. 5)
      • 40. Singh, S., Singh, A., Kaler, R.: ‘Performance evaluation of EDFA, RAMAN and SOA optical amplifier for WDM systems’, Optik, 2013, 124, (2), pp. 95101.
    6. 6)
      • 37. Ferreira, G.C., Cani, S., Pontes, M., et al: ‘Optimization of distributed Raman amplifiers using a hybrid genetic algorithm with geometric compensation technique’, IEEE Photonics J., 2011, 3, (3), pp. 390399.
    7. 7)
      • 19. Harun, S.W., Low, S., Poopalan, P., et al: ‘Gain clamping in L-band erbium-doped fiber amplifier using a fiber Bragg grating’, IEEE Photonics Technol. Lett., 2002, 14, (3), pp. 293295.
    8. 8)
      • 46. Markom, A., Paul, M.C., Das, S., et al: ‘Performance comparison of enhanced erbium–zirconia–yttria–aluminum co-doped conventional erbium-doped fiber amplifiers’, Optik, 2017, 132, pp. 7579.
    9. 9)
      • 45. Paul, M.C., Dhar, A., Das, S., et al: ‘Enhanced erbium–zirconia–yttria–aluminum Co-doped fiber amplifier’, IEEE Photonics J., 2015, 7, (5), pp. 17.
    10. 10)
      • 33. Kir'yanov, A., Siddiki, S.H., Barmenkov, Y.O., et al: ‘Hafnia–yttria–alumina–silica based optical fibers with diminished mid-IR (>2 µm) loss’, Opt. Mater. Express, 2017, 7, (7), pp. 25112518.
    11. 11)
      • 9. Rocha, A., Nogueira, R.: ‘Flexible single pump hybrid fiber amplifier for the S + C bands’, Opt. Commun., 2014, 320, pp. 105108.
    12. 12)
      • 47. Almukhtar, A.A., Al-Azzawi, A.A., Ahmad, B.A., et al: ‘Flat-gain and wide-band partial double-pass erbium co-doped fiber amplifier with hybrid gain medium’, Opt. Fiber Technol., 2019, 52, p. 101952.
    13. 13)
      • 29. Duarte, J., Paul, M.C., Das, S., et al: ‘Optical amplification performance of erbium doped zirconia–yttria–alumina–baria silica fiber’, Opt. Mater. Express, 2019, 9, (6), pp. 26522661.
    14. 14)
      • 24. Ha, A.-R., SZ, M.-Y., MR, T., et al: ‘Dual-stage Er/Yb doped fiber amplifier for gain and noise figure enhancements’, IEICE Electron. Express, 2006, 3, (23), pp. 517521.
    15. 15)
      • 28. Gill, D., McCaughan, L., Wright, J.: ‘Spectroscopic site determinations in erbium-doped lithium niobate’, Phys. Rev. B, 1996, 53, (5), p. 2334.
    16. 16)
      • 14. Sadik, S.A., Durak, F.E., Altuncu, A.: ‘Widely tunable erbium doped fiber ring laser based on loop and double-pass EDFA design’, Opt. Laser Technol., 2020, 124, p. 105979.
    17. 17)
      • 44. Hamida, B., Azooz, S.M., Jasim, A.A., et al: ‘Flat-gain wide-band erbium doped fiber amplifier with hybrid gain medium’, Optik, 2016, 127, (5), pp. 24812484.
    18. 18)
      • 13. Husein, A.H.M., El-Nahal, F.I.: ‘Optimizing the EDFA gain for WDM lightwave system with temperature dependency’, Optik, 2012, 123, (7), pp. 586589.
    19. 19)
      • 49. Matera, F., Romagnoli, M., Settembre, M., et al: ‘Evaluation of chromatic dispersion in erbium doped fibre amplifiers’, Electron. Lett., 1991, 27, (20), pp. 18671869.
    20. 20)
      • 16. Shen, J.-L., Lee, Y.-C., Huang, C.-C.: ‘L-band automatic-gain-controlled erbium-doped fiber amplifier utilizing C-band backward-amplified spontaneous emission and electrical feedback monitor’, Appl. Opt., 2009, 48, (5), pp. 842846.
    21. 21)
      • 17. Qureshi, K.K., Tam, H.: ‘Multiwavelength fiber ring laser using a gain clamped semiconductor optical amplifier’, Opt. Laser Technol., 2012, 44, (6), pp. 16461648.
    22. 22)
      • 6. Yucel, M., Aslan, Z., Burunkaya, M.: ‘Classification of the temperature-dependent gain of an erbium-doped fiber amplifier by using data mining methods’, Optik, 2020, 108, p. 164515.
    23. 23)
      • 20. Durak, F.E., Altuncu, A.: ‘The effect of ASE reinjection configuration through FBGs on the gain and noise figure performance of L-band EDFA’, Opt. Commun., 2017, 386, pp. 3136.
    24. 24)
      • 42. Foley, B., Dakss, M. L., Davies, R. W., et al: ‘Gain saturation in fiber Raman amplifiers due to stimulated Brillouin scattering’, J. Lightwave Technol., 1989, 7, (12), pp. 20242032.
    25. 25)
      • 18. Yang, J., Meng, X., Liu, C., et al: ‘Gain-flattened two-stage L-band erbium-doped fiber amplifier by weak gain-clamped technique’, Opt. Eng., 2015, 54, (3), p. 036107.
    26. 26)
      • 30. Kir'yanov, A.V., Dutta, D., Das, S., et al: ‘Optical properties of chromium and erbium co-doped alumina–germania–calcia–yttria–silica based fiber’, IEEE Photonics J., 2019, 11, (6), p. 7105013.
    27. 27)
      • 35. Al-Azzawi, A.A., Almukhtar, A.A., Reddy, P.H., et al: ‘An efficient wideband hafnia–bismuth erbium co-doped fiber amplifier with flat-gain over 80 nm wavelength span’, Opt. Fiber Technol., 2019, 48, pp. 186193.
    28. 28)
      • 31. Goel, N.K., Pickrell, G., Stolen, R.: ‘An optical amplifier having 5 cm long silica-clad erbium doped phosphate glass fiber fabricated by ‘core-suction’ technique’, Opt. Fiber Technol., 2014, 20, (4), pp. 325327.
    29. 29)
      • 22. Almukhtar, A.A., Al-Azzawi, A.A., San, C.X., et al: ‘Enhanced triple-pass hybrid erbium doped fiber amplifier using distribution pumping scheme in a dual-stage configuration’, Optik, 2020, 204, p. 164191.
    30. 30)
      • 1. Yusoff, N.M., Bakar, M.A., Sheih, S., et al: ‘Gain-flattened erbium-doped fiber amplifier with flexible selective band for optical networks’, Laser Phys., 2010, 20, (8), pp. 17471751.
    31. 31)
      • 39. Yucel, M., Aslan, Z.: ‘The noise figure and gain improvement of double-pass C-band EDFA’, Microw. Opt. Technol. Lett., 2013, 55, (11), pp. 25252528.
    32. 32)
      • 12. Berkdemir, C., Özsoy, S.: ‘The temperature dependent performance analysis of EDFAs pumped at 1480 nm: a more accurate propagation equation’, Opt. Express, 2005, 13, (13), pp. 51795185.
    33. 33)
      • 4. Liang, T.-C., Hsu, S.: ‘The L-band EDFA of high clamped gain and low noise figure implemented using fiber Bragg grating and double-pass method’, Opt. Commun., 2008, 281, (5), pp. 11341139.
    34. 34)
      • 2. Singh, S., Kaler, R.S.: ‘Review on recent developments in hybrid optical amplifier for dense wavelength division multiplexed system’, Opt. Eng., 2015, 54, (10), p. 100901.
    35. 35)
      • 3. Ravikanth, J., Shah, D., Vijaya, R., et al: ‘Analysis of high-power EDFA operating in saturated regime at λ = 1530 nm and its performance evaluation in DWDM systems’, Microw. Opt. Technol. Lett., 2002, 32, (1), pp. 6470.
    36. 36)
      • 25. Al-Azzawi, A.A., Almukhtar, A.A., Hamida, B.A., et al: ‘Wideband and flat gain series erbium doped fiber amplifier using hybrid active fiber with backward pumping distribution technique’, Results Phys., 2019, 13, p. 102186.
    37. 37)
      • 23. Carena, A., Curri, V., Poggiolini, P.: ‘On the optimization of hybrid Raman/erbium-doped fiber amplifiers’, IEEE Photonics Technol. Lett., 2001, 13, (11), pp. 11701172.
    38. 38)
      • 21. Liang, T.-C, Chen, Y.-K., Su, J.-H., et al: ‘Optimum configuration and design of 1480-nm pumped L-band gain-flattened EDFA using conventional erbium-doped fiber’, Opt. Commun., 2000, 183, (1–4), pp. 5163.
    39. 39)
      • 11. Singh, S., Kaler, R.: ‘Flat-gain L-band Raman-EDFA hybrid optical amplifier for dense wavelength division multiplexed system’, IEEE Photonics Technol. Lett., 2012, 25, (3), pp. 250252.
    40. 40)
      • 32. Al-Azzawi, A.A., Almukhtar, A.A., Reddy, P.H., et al: ‘Compact and flat-gain fiber optical amplifier with Hafnia-bismuth–erbium co-doped fiber’, Optik, 2018, 170, pp. 5660.
    41. 41)
      • 48. Becker, P.M., Olsson, A.A., Simpson, J.R.: ‘Erbium-doped fiber amplifiers: fundamentals and technology’ (Academic Press, San Diego, USA, 1999).
    42. 42)
      • 43. Ali, M., Abdullah, F., Jamaludin, M. Z., et al: ‘Effect of cascading amplification stages on the performance of serial hybrid fiber amplifier’, Fiber Integr. Opt., 2015, 34, (3), pp. 131144.
    43. 43)
      • 34. Todoroki, S., Hirao, K., Soga, N.: ‘Origin of inhomogeneous linewidth of Eu3+ fluorescence in several oxide glasses’, J. Appl. Phys., 1992, 72, (12), pp. 58535860.
    44. 44)
      • 15. Yang, J., Meng, X., Liu, C.: ‘Accurately control and flatten gain spectrum of L-band erbium doped fiber amplifier based on suitable gain-clamping’, Opt. Laser Technol., 2016, 78, pp. 7478.
    45. 45)
      • 50. Dar, A.B., Jha, R.K.: ‘’Chromatic dispersion compensation techniques and characterization of fiber Bragg grating for dispersion compensation’, Opt. Quantum Electron., 2017, 49, (3), p. 108.
    46. 46)
      • 10. Almukhtar, A.A., Azzawi, A.A., Reddy, P.H., et al: ‘Wideband optical fiber amplifier with short length of enhanced erbium–zirconia–yttria–aluminum co-doped fiber’, Optik, 2019, 182, pp. 194200.
    47. 47)
      • 26. Firstov, S., Riumkin, K.E., Khegai, A.M., et al: ‘Wideband bismuth-and erbium-codoped optical fiber amplifier for C + L + U-telecommunication band’, Laser Phys. Lett., 2017, 14, (11), p. 110001.
    48. 48)
      • 5. Durak, F.E., Altuncu, A.: ‘All-optical gain clamping and flattening in L-band EDFAs using lasing-controlled structure with FBG’, Opt. Fiber Technol., 2018, 45, pp. 217222.
    49. 49)
      • 27. Harun, S.W., Poopalan, P., Ahmad, H.: ‘Gain enhancement in L-band EDFA through a double-pass technique’, IEEE Photonics Technol. Lett., 2002, 14, (3), pp. 296297.
    50. 50)
      • 7. Harun, S. W., Saat, N. K., Ahmad, H.: ‘An efficient S-band erbium-doped fiber amplifier using double-pass configuration’, IEICE Electron. Express, 2005, 2, (6), pp. 182185.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2020.0072
Loading

Related content

content/journals/10.1049/iet-opt.2020.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading