access icon free Fibre Bragg grating sensors for sutural expansion assessment in rapid palatal expanders: an ex-vivo validation

This study presents the development and validation of a fibre Bragg gratings (FBGs)-based sensor system for the assessment of strain in the midpalatal suture in subjects using rapid palatal expanders (RPEs). The ex-vivo experiments were made by means of positioning two RPEs in a porcine palatal region. The RPEs used were the Hyrax, a tooth-borne expander and MARPE (microimplant-assisted rapid palatal expansion), a bone-borne expander. In order to define the regions in the palatal region for the sensors positioning, a finite-element analysis was performed in a porcine head subjected to the loadings caused by an RPE. In addition, a strain transfer model was used to obtain a correction coefficient that approximates the strain estimated by the FBG to the actual strain in the structure under shear and normal stress. Results show high linearity in the sensors characterisation tests with the advantages of compactness, intrinsic safe operation and multiplexing capabilities of FBGs. In the RPE analysis, a higher strain was estimated in the anterior region, which is in accordance with the simulation and previously reported results, where MARPE showed a higher strain (with an exponential pattern) than Hyrax as the number of activations increase.

Inspec keywords: bone; strain measurement; finite element analysis; biomechanics; dentistry; Bragg gratings; fibre optic sensors; biomedical equipment

Other keywords: RPEs; microimplant-assisted rapid palatal expansion; porcine head; anterior region; correction coefficient; intrinsic safe operation; sensor characterisation tests; strain transfer model; normal stress; sensor positioning; finite-element analysis; fibre Bragg grating-based sensor system; shear stress; ex-vivo validation; midpalatal suture; sutural expansion assessment; bone-borne expander; tooth-borne expander; rapid palatal expanders; multiplexing capability; ex-vivo experiments; Hyrax; porcine palatal region

Subjects: Fibre optic sensors; fibre gyros; Optical and laser radiation (medical uses); Mechanical variables measurement; Mechanical properties of tissues and organs; Measurement of mechanical variables; Finite element analysis; Optical and laser radiation (biomedical imaging/measurement); Patient diagnostic methods and instrumentation; Numerical approximation and analysis; Fibre optic sensors

References

    1. 1)
      • 27. Wan, K.T., Leung, C.K.Y., Olson, N.G.: ‘Investigation of the strain transfer for surface-attached optical fiber strain sensors’, Smart Mater. Struct., 2008, 17, (3), pp. 112.
    2. 2)
      • 7. Grattan, K.T.V., Sun, T.: ‘Fiber optic sensor technology: an overview’, 2000, pp. 4061.
    3. 3)
      • 29. Leal-Junior, A.G., Theodosiou, A., Marques, C., et al: ‘Compensation method for temperature cross-sensitivity in transverse force applications with FBG sensors in POFs’, J. Light. Technol., 2018, 36, (17), pp. 36603665.
    4. 4)
      • 8. Leal-Junior, A.G., Theodosiou, A., Min, R., et al: ‘Quasi-distributed torque and displacement sensing on a series elastic actuator's spring using FBG arrays inscribed in CYTOP fibers’, IEEE Sens. J., 2019, 1748, (c), pp. 11.
    5. 5)
      • 20. Sun, Z., Hueni, S., Tee, B.C., et al: ‘Mechanical strain at alveolar bone and circummaxillary sutures during acute rapid palatal expansion’, Am. J. Orthod. Dentofac. Orthop., 2011, 139, (3), pp. e219e228.
    6. 6)
      • 25. Li, H.N., Zhou, G.D., Ren, L., et al: ‘Strain transfer coefficient analyses for embedded fiber Bragg grating sensors in different host materials’, J. Eng. Mech., 2009, 135, (12), pp. 13431353.
    7. 7)
      • 22. Li, J., Zhou, Z., Ou, J.: ‘Interface transferring mechanism and error modification of embedded FBG strain sensor’, Smart Struct. Mater. 2004 Smart Sens. Technol. Meas. Syst., 2004, 5384, p. 190.
    8. 8)
      • 28. Her, S.C., Huang, C.Y.: ‘Effect of coating on the strain transfer of optical fiber sensors’, Sensors, 2011, 11, (7), pp. 69266941.
    9. 9)
      • 10. Kinet, D., Mégret, P., Goossen, K., et al: ‘Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions’, Sensors, 2014, 14, (4), pp. 73947419.
    10. 10)
      • 18. Zimring, J., Isaacson, R.: ‘Forces produced by rapid maxillary expansion’, Angle Orthod., 1965, 86, pp. 178186.
    11. 11)
      • 23. Li, D.: ‘Strain transferring analysis of fiber Bragg grating sensors’, Opt. Eng., 2006, 45, (2), p. 024402.
    12. 12)
      • 16. Garrett, B.J., Caruso, J.M., Rungcharassaeng, K., et al: ‘Skeletal effects to the maxilla after rapid maxillary expansion assessed with cone-beam computed tomography’, Am. J. Orthod. Dentofac. Orthop., 2008, 134, (1), pp. 8.e18.e11.
    13. 13)
      • 12. Fresvig, T., Ludvigsen, P., Steen, H., et al: ‘Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone’, Med. Eng. Phys., 2008, 30, (1), pp. 104108.
    14. 14)
      • 6. Marques, C., Leal-Junior, A., Min, R., et al: ‘Advances on polymer optical fiber gratings using a KrF pulsed laser system operating at 248 nm’, Fibers, 2018, 6, (1), p. 13.
    15. 15)
      • 17. Mosleh, M.I., Kaddah, M.A., Abd Elsayed, F.A., et al: ‘Comparison of transverse changes during maxillary expansion with 4-point bone-borne and tooth-borne maxillary expanders’, Am. J. Orthod. Dentofac. Orthop., 2015, 148, (4), pp. 599607.
    16. 16)
      • 9. Leal-Junior, A.G., Frizera, A., Theodosiou, A., et al: ‘Plane-by-plane written, low-loss polymer optical fiber Bragg grating arrays for multiparameter sensing in a smart walker’, IEEE Sens. J., 2019, 1748, (c), pp. 11.
    17. 17)
      • 24. Sun, L., Hao, H., Zhang, B., et al: ‘Strain transfer analysis of embedded fiber Bragg grating strain sensor’, J. Test. Eval., 2016, 44, (6), p. 20140388.
    18. 18)
      • 15. Tiwari, U., Mishra, V., Bhalla, A., et al: ‘Fiber Bragg grating sensor for measurement of impact absorption capability of mouthguards’, Dent. Traumatol., 2011, 27, (4), pp. 263268.
    19. 19)
      • 13. Ottevaere, H., Tabak, M., Fernandez Fernandez, A., et al: ‘Optical fiber sensors and their application in monitoring stress build-up in dental resin cements’, Opt. Fibers Appl., 2005, 5952, p. 59520P.
    20. 20)
      • 14. Tjin, S.C., Tan, Y.K., Yow, M., et al: ‘Recording compliance of dental splint use in obstructive sleep apnoea patients by force and temperature modelling’, Med. Biol. Eng. Comput., 2001, 39, (2), pp. 182184.
    21. 21)
      • 1. Broadway, C., Min, R., Leal-Junior, A.G., et al: ‘Toward commercial polymer fiber Bragg grating sensors: review and applications’, J. Light. Technol., 2019, 37, (11), pp. 26052615.
    22. 22)
      • 2. Allwood, G., Wild, G., Hinckley, S.: ‘Fiber Bragg grating sensors for mainstream industrial processes’, Electron., 2017, 6, (4), pp. 119.
    23. 23)
      • 30. Fuhrer, R.S., Romanyk, D.L., Carey, J.P.: ‘A comparative finite element analysis of maxillary expansion with and without midpalatal suture viscoelasticity using a representative skeletal geometry’, Sci. Rep., 2019, 9, (1), pp. 111.
    24. 24)
      • 4. Cusano, A., Cutolo, A., Albert, J.: ‘Fiber Bragg grating sensors: market overview and new perspectives’ (Bentham Science Publishers, Potomac, 2009).
    25. 25)
      • 26. Ansari, F., Libo, Y.: ‘Mechanics of bond and interface shear transfer in optical fiber sensors’, J. Eng. Mech., 1998, 124, (4), pp. 385394.
    26. 26)
      • 5. Hill, K.O., Meltz, G.: ‘Fiber Bragg grating technology fundementals and overview’, IEEE J. Light. Technol., 1997, 15, (8), pp. 12631276.
    27. 27)
      • 19. Garcia, V.J., Comesaña, R., Kasem, K., et al: ‘Short-term effects of strain produced on a split palatal screw-type hyrax appliance after rapid maxillary expansion: A clinical trial’, Am. J. Orthod. Dentofac. Orthop., 2015, 148, (6), pp. 990998.
    28. 28)
      • 11. Brosh, T., Vardimon, A.D., Ergatudes, C., et al: ‘Rapid palatal expansion. Part 3: strains developed during active and retention phases’, Am. J. Orthod. Dentofac. Orthop., 1998, 114, (2), pp. 123133.
    29. 29)
      • 21. Lee, S.C., Park, J.H., Bayome, M., et al: ‘Effect of bone-borne rapid maxillary expanders with and without surgical assistance on the craniofacial structures using finite element analysis’, Am. J. Orthod. Dentofac. Orthop., 2014, 145, (5), pp. 638648.
    30. 30)
      • 3. Mishra, V., Singh, N., Tiwari, U., et al: ‘Fiber grating sensors in medicine: current and emerging applications’, Sens. Actuators, A Phys., 2011, 167, (2), pp. 279290.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2020.0044
Loading

Related content

content/journals/10.1049/iet-opt.2020.0044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading