access icon free Generation of passively Q-switched ytterbium laser by using tungsten tri-oxide film absorber

This study experimentally demonstrates a Q-switched fibre laser using a new tungsten tri-oxide (WO3)-based saturable absorber (SA). Using the drop and casting approach, we managed to prepare a thin film that contained WO3 powders in polyvinyl alcohol. A small bit of the film was used to form an SA which was placed in a ytterbium-doped fibre laser cavity to generate a Q-switched laser. The laser, operating at 1063.78 nm, was realised at the threshold pump power of 85 mW with a repetition rate of 23.87 kHz and a pulse width of 5.56 μs. At the pump power of 147 mW, the laser produced the maximum pulse energy of 625 nJ, signal-to-noise ratio of 59 dB, the repetition rate of 39.79 kHz and pulse width of 2.37 μs. To the best of our knowledge, this is the first demonstration of using WO3 SA to generate the pulse laser in the 1 μm region.

Inspec keywords: ytterbium; laser cavity resonators; Q-switching; optical pumping; optical saturable absorption; tungsten compounds; casting; fibre lasers; thin films

Other keywords: wavelength 1063.78 nm; time 5.56 mus; frequency 39.79 kHz; drop approach; passively Q-switched ytterbium laser; WO3; powders; pulse width; power 85.0 mW; Q-switched fibre laser; tungsten trioxide film absorber; time 2.37 mus; frequency 23.87 kHz; wavelength 1.0 mum; tungsten trioxide-based saturable absorber; energy 625.0 nJ; threshold pump power; casting approach; pulse energy; power 147.0 mW; polyvinyl alcohol; pulse laser; ytterbium-doped fibre laser cavity; repetition rate; signal-to-noise ratio

Subjects: Laser beam modulation, pulsing and switching; mode locking and tuning; Laser resonators and cavities; Laser beam modulation, pulsing and switching; mode locking and tuning; Fibre lasers and amplifiers; Optical saturation and related effects; Laser resonators and cavities; Design of specific laser systems; Fibre lasers and amplifiers; Optical transient phenomena, self-induced transparency, optical saturation and related effects

References

    1. 1)
      • 33. Al-Masoodi, A.H.H., Ahmed, M.H.M., Latiff, A.A., et al: ‘Q-switched ytterbium-doped fiber laser using black phosphorus as saturable absorber, Chin. Phys. Lett., 2016, 33, (5), p. 054206.
    2. 2)
      • 36. Lu, L., Liang, Z., Wu, L., et al: ‘Few-layer bismuthene: sonochemical exfoliation, nonlinear optics and applications for ultrafast photonics with enhanced stability’, Laser Photonics Rev., 2018, 12, (1), p. 1700221.
    3. 3)
      • 4. Wang, L., Liu, X., Gong, Y., et al: ‘Observations of four types of pulses in a fiber laser with large net-normal dispersion’, Opt. Express, 2011, 19, (8), pp. 76167624.
    4. 4)
      • 56. Abdullah, O.G.., Aziz, S.B., Omer, K.M., et al: ‘Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite’, J. Mater. Sci., Mater. Electron., 2015, 26, (7), pp. 53035309:.
    5. 5)
      • 28. Zhang, Y., Liu, T., Meng, B., et al: ‘Broadband high photoresponse from pure monolayer graphene photodetector’, Nat. Commun., 2013, 4, p. 1811.
    6. 6)
      • 12. Liu, J., Chen, Y., Tang, P., et al: ‘Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser’, Opt. Express, 2015, 23, (5), pp. 64186427.
    7. 7)
      • 18. Peng, K.-J., Lin, Y.-H., Wu, C.-L., et al: ‘Dissolution-and-reduction CVD synthesis of few-layer graphene on ultra-thin nickel film lifted off for mode-locking fiber lasers’, Sci. Rep., 2015, 5, p. 13689.
    8. 8)
      • 32. Ma, J., Lu, S., Guo, Z., et al: ‘Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers’, Opt. Express, 2015, 23, (17), pp. 2264322648.
    9. 9)
      • 63. Wang, N., Lu, B.-L., Qi, X.-Y., et al: ‘Passively Q-switched ytterbium-doped fiber laser with ReSe2 saturable absorber’, Opt. Laser Technol., 2019, 116, pp. 300304.
    10. 10)
      • 14. Liu, W., Pang, L., Han, H., et al: ‘70-fs mode-locked erbium-doped fiber laser with topological insulator’, Sci. Rep., 2016, 6, p. 19997.
    11. 11)
      • 22. Huang, K.-X., Lu, B.-L., Li, D., et al: ‘Black phosphorus flakes covered microfiber for Q-switched ytterbium-doped fiber laser’, Appl. Opt., 2017, 56, (23), pp. 64276431.
    12. 12)
      • 10. Villegas, I.L., Cuadrado-Laborde, C., Díez, A., et al: ‘Yb-doped strictly all-fiber laser actively Q-switched by intermodal acousto-optic modulation’, Laser Phys., 2011, 21, (9), p. 1650.
    13. 13)
      • 5. Liu, X.: ‘Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser’, Phys. Rev. A, 2010, 81, (2), p. 023811.
    14. 14)
      • 44. Al-Hiti, A.S., Rahman, M.F.A., Harun, S.W., et al: ‘Holmium oxide thin film as a saturable absorber for generating Q-switched and mode-locked erbium-doped fiber lasers’, Opt. Fiber Technol., 2019, 52, p. 101996.
    15. 15)
      • 34. Mu, H., Wang, Z., Yuan, J., et al: ‘Graphene–Bi2Te3 heterostructure as saturable absorber for short pulse generation’, Acs Photonics, 2015, 2, (7), pp. 832841.
    16. 16)
      • 8. Cowle, G.J., Stepanov, D.Y.: ‘Multiple wavelength generation with Brillouin/erbium fiber lasers’, IEEE Photonics Technol. Lett., 1996, 8, (11), pp. 14651467.
    17. 17)
      • 16. Li, P.-X., Yao, Y.-F., Chi, J.-J., et al: ‘980-nm all-fiber mode-locked Yb-doped phosphate fiber oscillator based on semiconductor saturable absorber mirror and its amplifier’, Chin. Phys. B., 2016, 25, (8), p. 084207.
    18. 18)
      • 25. Chen, Y., Wu, M., Tang, P., et al: ‘The formation of various multi-soliton patterns and noise-like pulse in a fiber laser passively mode-locked by a topological insulator based saturable absorber’, Laser Phys. Lett., 2014, 11, (5), p. 055101.
    19. 19)
      • 59. Wang, Q., Chen, Y., Jiang, G., et al: ‘Drop-casted self-assembled topological insulator membrane as an effective saturable absorber for ultrafast laser photonics’, IEEE Photonics J., 2015, 7, (2), pp. 111.
    20. 20)
      • 35. Jiang, X., Liu, S., Liang, W., et al: ‘Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH)’, Laser Photonics Rev., 2018, 12, (2), p. 1700229.
    21. 21)
      • 47. Regan, K.P., Koenigsmann, C., Sheehan, S.W., et al: ‘Size-dependent ultrafast charge carrier dynamics of WO3 for photoelectrochemical cells’, J. Phys. Chem. C, 2016, 120, (27), pp. 1492614933.
    22. 22)
      • 1. Richardson, D.J., Nilsson, J., Clarkson, W.: ‘High power fiber lasers: current status and future perspectives’, J. Opt. Soc. Am. B, 2010, 27, (11), pp. B63B92.
    23. 23)
      • 11. Zhao, L., Tang, D., Wu, X., et al: ‘Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter’, Opt. Lett., 2010, 35, (16), pp. 27562758.
    24. 24)
      • 17. Fu, S., Chen, C., Ge, Z., et al: ‘Passive Q-switched erbium-doped fiber laser based on graphene saturable absorber’. Int. Symp. on Photonics and Optoelectronics 2014, Suzhou, China, 2014, Int. Society for Optics and Photonics.
    25. 25)
      • 7. Paschotta, R., Häring, R., Gini, E., et al: ‘Passively Q-switched 0.1-mJ fiber laser system at 1.53 ?’, Opt. Lett., 1999, 24, (6), pp. 388390.
    26. 26)
      • 54. Solarska, R., Bienkowski, K., Zoladek, S., et al: ‘Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold–polyoxometalate particles’, Angew. Chem., Int. Ed., 2014, 53, (51), pp. 1419614200.
    27. 27)
      • 24. Xu, N., Yang, W., Zhang, H.: ‘Nonlinear saturable absorption properties of indium selenide and its application for demonstrating a Yb-doped mode-locked fiber laser’, Opt. Mater. Express, 2018, 8, (10), pp. 30923103.
    28. 28)
      • 52. Hamdalla, T.A., Hanafy, T.A.: ‘Optical properties studies for PVA/Gd, La, Er or Y chlorides based on structural modification’, Optik-Int. J. Light Electron Opt., 2016, 127, (2), pp. 878882.
    29. 29)
      • 23. Hisyam, M.B., Rusdi, M.F., Latiff, A.A., et al: ‘PMMA-doped CdSe quantum dots as saturable absorber in a Q-switched all-fiber laser’, Chin. Opt. Lett., 2016, 14, (8), p. 081404.
    30. 30)
      • 45. Al-Hayali, S.K.M., Mohammed, D.Z., Khaleel, W.A., et al: ‘Aluminum oxide nanoparticles as saturable absorber for C-band passively Q-switched fiber laser’, Appl. Opt., 2017, 56, (16), pp. 47204726.
    31. 31)
      • 21. Liu, W., Liu, M., OuYang, Y., et al: ‘CVD-grown MoSe2 with high modulation depth for ultrafast mode-locked erbium-doped fiber laser’, Nanotechnology, 2018, 29, (39), p. 394002.
    32. 32)
      • 53. Periasamy, P., Krishnakumar, T., Sathish, M., et al: ‘Structural and electrochemical studies of tungsten oxide (WO3) nanostructures prepared by microwave assisted wet-chemical technique for supercapacitor’, J. Mater. Sci., Mater. Electron., 2018, 29, (8), pp. 61576166.
    33. 33)
      • 65. Lu, B., Wen, Z.R., Huang, K., et al: ‘Passively Q-switched Yb3 + -doped fiber laser with ReS2 saturable absorber’, IEEE J. Sel. Top. Quantum Electron., 2018, 25, (4), pp. 14.
    34. 34)
      • 2. Don Lee, H., Lee, J.H., Jeong, M.Y., et al: ‘Characterization of wavelength-swept active mode locking fiber laser based on reflective semiconductor optical amplifier’, Opt. Express, 2011, 19, (15), pp. 1458614593.
    35. 35)
      • 38. Kwon, J.Y., Jeong, J.K.: ‘Recent progress in high performance and reliable n-type transition metal oxide-based thin film transistors’, Semicond. Sci. Technol., 2015, 30, (2), p. 024002.
    36. 36)
      • 29. Bao, Q., Zhang, H., Wang, Y., et al: ‘Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers’, Adv. Funct. Mater., 2009, 19, (19), pp. 30773083.
    37. 37)
      • 13. Kasim, N., Al-Masoodi, A.H.H., Ahmad, F., et al: ‘Q-switched ytterbium doped fiber laser using multi-walled carbon nanotubes saturable absorber’, Chin. Opt. Lett., 2014, 12, (3), p. 031403.
    38. 38)
      • 9. Bouyge, D., Crunteanu, A., Couderc, V., et al: ‘Synchronized tunable $ Q $-switched fiber lasers using deformable achromatic microelectromechanical mirror’, IEEE Photonics Technol. Lett., 2008, 20, (12), pp. 991993.
    39. 39)
      • 62. Rahman, M.F.A., Latiff, A.A., Rusdi, M.F.M., et al: ‘Q-switched ytterbium-doped fiber laser via a thulium-doped fiber saturable absorber’, Appl. Opt., 2018, 57, (22), pp. 65106515.
    40. 40)
      • 41. Ahmad, H., Salim, M.A.M., Ismail, M.F., et al: ‘Q-switched ytterbium-doped fiber laser with zinc oxide based saturable absorber’, Laser Phys., 2016, 26, (11), p. 115107.
    41. 41)
      • 26. Al-Masoodi, A.H.H., Ahmad, F., Ahmed, M.H.M., et al: ‘Q-switched ytterbium-doped fiber laser with topological insulator-based saturable absorber’, Opt. Eng., 2017, 56, (5), p. 056103.
    42. 42)
      • 19. Niu, K., Sun, R., Chen, Q., et al: ‘Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber’, Photonics Res., 2018, 6, (2), pp. 7276.
    43. 43)
      • 60. Chen, Y., Zhao, C., Chen, S., et al: ‘Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser’, IEEE J. Sel. Top. Quantum Electron., 2013, 20, (5), pp. 315322.
    44. 44)
      • 46. Srinivasan, A., Miyauchi, M.: ‘Chemically stable WO3 based thin-film for visible-light induced oxidation and superhydrophilicity’, J. Phys. Chem. C, 2012, 116, (29), pp. 1542115426.
    45. 45)
      • 3. Nasiriavanaki, M., Xia, J., Wan, H., et al: ‘High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain’, Proc. Natl. Acad. Sci., 2014, 111, (1), pp. 2126.
    46. 46)
      • 40. Al-Masoodi, A.H.H., Ahmed, M.H.M., Latiff, A.A., et al: ‘Nickel oxide nanoparticles thin film saturable absorber for 1-micron pulsed all-fibre lasers operation’, J. Mod. Opt., 2018, 65, (15), pp. 18011808.
    47. 47)
      • 30. Yan, P., Liu, A., Chen, Y., et al: ‘Passively mode-locked fiber laser by a cell-type WS 2 nanosheets saturable absorber’, Sci. Rep., 2015, 5, p. 12587.
    48. 48)
      • 58. Yu, Z., Song, Y., Tian, J., et al: ‘High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film’, Opt. Express, 2014, 22, (10), pp. 1150811515.
    49. 49)
      • 49. Chen, X.C.: ‘Preparation and property of TiO2 nanoparticle dispersed polyvinyl alcohol composite materials’, J. Mater. Sci. Lett., 2002, 21, (21), pp. 16371639.
    50. 50)
      • 43. Koo, J., Jeong, K., Yu, B.-A., et al: ‘Evanescent field interaction with Fe3O4 nano-particle for passively Q-switched thulium-doped fiber laser at 1.94 μm’, Opt. Laser Technol., 2019, 119, p. 105579.
    51. 51)
      • 20. Yang, Y., Yang, S., Li, C., et al: ‘Passively Q-switched and mode-locked Tm-Ho co-doped fiber laser using a WS2 saturable absorber fabricated by chemical vapor deposition’, Opt. Laser Technol., 2019, 111, pp. 571574.
    52. 52)
      • 66. Wang, J.-L., Wang, X.-L., He, B.-R., et al: ‘High-energy pulse generation using Yb-doped Q-switched fiber laser based on single-walled carbon nanotubes’, Chin. Phys. B, 2015, 24, (9), p. 097601.
    53. 53)
      • 39. Gerling, L.G., Mahato, S., Morales-Vilches, A., et al: ‘Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells’, Sol. Energy Mater. Sol. Cells, 2016, 145, pp. 109115.
    54. 54)
      • 15. Xu, N., Ming, N., Han, X., et al: ‘Large-energy passively Q-switched Er-doped fiber laser based on CVD-Bi2Se3 as saturable absorber’, Opt. Mater. Express, 2019, 9, (2), pp. 373383.
    55. 55)
      • 57. Chen, B., Zhang, X., Wu, K., et al: ‘Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2’, Opt. Express, 2015, 23, (20), pp. 2672326737.
    56. 56)
      • 61. Herda, R., Kivistö, S., Okhotnikov, O.G.: ‘Dynamic gain induced pulse shortening in Q-switched lasers’, Opt. Lett., 2008, 33, (9), pp. 10111013.
    57. 57)
      • 31. Mao, D., Zhang, S., Wang, Y., et al: ‘WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm’, Opt. Express, 2015, 23, (21), pp. 2750927519.
    58. 58)
      • 51. Singhal, A., Kaur, M., Dubey, K.A., et al: ‘Polyvinyl alcohol–In2O3 nanocomposite films: synthesis, characterization and gas sensing properties’, RSC Adv., 2012, 2, (18), pp. 71807189.
    59. 59)
      • 27. Luo, Z.-C., Luo, A.-P., Xu, W.-C.: ‘Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and inline birefringence comb filter’, IEEE Photonics J., 2010, 3, (1), pp. 6470.
    60. 60)
      • 50. Wu, K., Zhang, X., Wang, J., et al: ‘WS2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers’, Opt. Express, 2015, 23, (9), pp. 1145311461.
    61. 61)
      • 55. Eisa, W.H., Shabaka, A.A.: ‘Ag seeds mediated growth of Au nanoparticles within PVA matrix: an eco-friendly catalyst for degradation of 4-nitrophenol’, React. Funct. Polym., 2013, 73, (11), pp. 15101516.
    62. 62)
      • 64. Wang, J., Li, S., Wang, Y., et al: ‘High-energy Q-switched Yb-doped fiber laser based on WS 2 film saturable absorber’. 2016 Asia Communications and Photonics Conf. (ACP), Wuhan, China, 2016.
    63. 63)
      • 37. Ahmad, H., Reduan, S.A., Ali, Z.A., et al: ‘C-band Q-switched fiber laser using titanium dioxide (TiO2) as saturable absorber’, IEEE Photonics J., 2016, 8, (1), pp. 17.
    64. 64)
      • 6. Ding, E., Shlizerman, E., Kutz, J.N.: ‘Generalized master equation for high-energy passive mode-locking: the sinusoidal ginzburg–landau equation’, IEEE J. Quantum Electron., 2011, 47, (5), pp. 705714.
    65. 65)
      • 48. Al-Masoodi, A.H.H., Ahmad, F., Ahmed, M.H.M., et al: ‘Q-switched and mode-locked ytterbium-doped fibre lasers with Sb2Te3 topological insulator saturable absorber’, IET Optoelectron., 2018, 12, (4), pp. 180184.
    66. 66)
      • 42. Mohd Rusdi, M.F., Latiff, A.A., Paul, M.C., et al: ‘Titanium dioxide (TiO2) film as a new saturable absorber for generating mode-locked thulium-holmium doped all-fiber laser’, Opt. Laser Technol., 2017, 89, pp. 1620.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2019.0153
Loading

Related content

content/journals/10.1049/iet-opt.2019.0153
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading