access icon free Proposal of novel photonic crystal fibre for sensing adulterated petrol and diesel with kerosene in terahertz frequencies

A novel liquid-core photonic crystal fibre (LC-PCF) based on the Zeonex substrate has been proposed for sensing the varying concentration of kerosene in petrol and diesel fuels in terahertz frequencies. Fuel sample infiltration is achieved by designing a single hexagon in the porous core region. The LC-PCF has been numerically studied using a finite element method. By filling the core hexagon with different petrol–kerosene and diesel–kerosene concentrations, sensitivity and transmission profiles of the proposed LC-PCF have been examined. The impact of different design parameters of the fibre on its performance has been analysed, allowing the optimum design parameter set to be selected for further analysis. The proposed fibre shows relative sensitivities above 96% and effective material losses in the order of 10−3. With negligible confinement losses, the proposed fibre demonstrates near-zero ultra-flattened group velocity dispersion profiles within 1–1.6 THz. It is envisaged that the proposed fibre may be fabricated easily due to its simple design, and thus, serving as a significant step towards understanding THz pulse interaction with liquid petrochemical products.

Inspec keywords: refractive index measurement; photonic crystals; holey fibres; chemical sensors; terahertz wave devices; chemical analysis; fibre optic sensors

Other keywords: liquid petrochemical products; confinement losses; liquid-core photonic crystal fibre; frequency 1 THz to 1.6 THz; terahertz frequencies; kerosene; photonic crystal fibre sensor; Zeonex substrate; THz pulse interaction; adulterated diesel; finite element method; near-zero ultra-flattened group velocity dispersion profiles; transmission profiles; optimum design parameter; single hexagon; porous core region; adulterated petrol; fuel sample infiltration

Subjects: Optical refractometry and reflectometry; Fibre optic sensors; fibre gyros; Optical variables measurement; Optical materials; Chemical variables measurement; Chemical sensors; Chemical sensors; Fibre optic sensors; Nonlinear optics and devices; Fibre optics; Photonic bandgap materials; Nonlinear optics

References

    1. 1)
      • 23. Ahmed, K., Ahmed, F., Roy, S., et al: ‘Refractive index-based blood components sensing in terahertz spectrum’, IEEE Sens. J., 2019, 19, (9), pp. 33683375.
    2. 2)
      • 10. Gupta, A., Sharm, R.K.: ‘A New Method for Estimation of Automobile Fuel Adulteration’. Air Pollution, (2010, https://www.intechopen.com/books/air-pollution) pp. 357370.
    3. 3)
      • 5. Mahlia, T.M.I., Lim, J.Y., Aditya, L., et al: ‘Methodology for implementing power plant efficiency standards for power generation: potential emission reduction’, Clean Technol. Environ. Policy, 2018, 20, (2), pp. 309327.
    4. 4)
      • 24. Islam, M.S., Sultana, J., Ahmed, K., et al: ‘A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime’, IEEE Sens. J., 2018, 18, (2), pp. 575582.
    5. 5)
      • 34. Patra, D., Mishra, A.K.: ‘Effect of sample geometry on synchronous fluorimetric analysis of petrol, diesel, kerosene and their mixtures at higher concentration’, Analyst, 2000, 125, (8), pp. 13831386.
    6. 6)
      • 21. Rana, S., Kandadai, N., Subbaraman, H.: ‘A highly sensitive, polarization maintaining photonic crystal fiber sensor operating in the THz regime’, Photonics, 2018, 5, (4), p. 40.
    7. 7)
      • 19. Baume, N., Jan, N., Emery, C., et al: ‘Antidoping programme and biological monitoring before and during the 2014 FIFA world cup Brazil’, Br. J. Sports Med., 2015, 49, (9), pp. 614622.
    8. 8)
      • 29. Selleri, S., Vincetti, L., Cucinotta, A., et al: ‘Complex FEM modal solver of optical waveguides with PML boundary conditions’, Opt. Quantum Electron., 2001, 33, (4–5), pp. 359371.
    9. 9)
      • 26. Rifat, A.A., Ahmed, K., Asaduzzaman, S., et al: ‘Development of photonic crystal fiber-based gas/chemical sensors’. in ‘Computational photonic sensors’ (Springer International Publishing, Cham, 2019), pp. 287317.
    10. 10)
      • 11. Agarwal, S., Prajapati, Y.K., Mishra, V.: ‘Thinned fibre Bragg grating as a fuel adulteration sensor: simulation and experimental study’, Opto-Electron. Rev., 2015, 23, (4), pp. 231238.
    11. 11)
      • 15. Kher, S., Chaubey, S., Kishore, J., et al: ‘Detection of fuel adulteration with high sensitivity using turnaround point long period fiber gratings in B/Ge doped fibers’, IEEE Sens. J., 2013, 13, (11), pp. 44824486.
    12. 12)
      • 13. Mishra, V., Jain, S.C., Singh, N., et al: ‘Fuel adulteration detection using long period fiber grating sensor technology’, Indian J. Pure Appl. Phys., 2008, 46, (2), pp. 106110.
    13. 13)
      • 3. Moreira, L.S., D'Avila, L.A., Azevedo, D.A.: ‘Automotive gasoline quality analysis by gas chromatography: study of adulteration’, Chromatographia, 2003, 58, (7–8), pp. 501505.
    14. 14)
      • 1. Osueke, E.C.O., Ofondu, E.I.O.: ‘Fuel adulteration in Nigeria and its consequences’, Int. J. Mech. Mech. Eng., 2011, 11, (4), pp. 3437.
    15. 15)
      • 12. Roy, S.: ‘Fiber optic sensor for determining adulteration of petrol and diesel by kerosene’, Sens. Actuators, B, 1999, 55, (2), pp. 212216.
    16. 16)
      • 2. Massawe, E.A., Kilavo, H., Sam, A., et al: ‘Fuel adulteration in Tanzania and its consequences: an overview’, Emerg. Acad. Res., 2013, 2, (4), pp. 281284.
    17. 17)
      • 6. Jin, Y.S., Kim, G.J., Shon, C.H., et al: ‘Analysis of petroleum products and their mixtures by using terahertz time domain spectroscopy’, J. Korean Phys. Soc., 2008, 53, (4), pp. 18791885.
    18. 18)
      • 16. Pathak, A.K., Gangwar, R.K., Priyadarshini, P., et al: ‘A robust optical fiber sensor for the detection of petrol adulteration’, Optik (Stuttg)., 2017, 149, pp. 4348.
    19. 19)
      • 14. Patil, S.S., Shaligram, A.D.: ‘Refractometric fiber optic adulteration level’, Int. J. Adv. Eng. Technol., 2011, 1, (4), pp. 195203.
    20. 20)
      • 8. Lam, N.L., Smith, K.R., Gauthier, A., et al: ‘Kerosene: a review of household uses and their hazards in low-and middle-income countries’, J. Toxicol. Environ. Health - B: Crit. Rev., 2012, 15, (6), pp. 396432.
    21. 21)
      • 28. Uthman, M., Rahman, B.M.A.A., Kejalakshmy, N., et al: ‘Design and characterization of low-loss porous-core photonic crystal fiber’, IEEE Photonics J., 2012, 4, (6), pp. 23152325.
    22. 22)
      • 20. Paul, B.K., Ahmed, K., Vigneswaran, D., et al: ‘Quasi-photonic crystal fiber-based spectroscopic chemical sensor in the terahertz spectrum: design and analysis’, IEEE Sens. J., 2018, 18, (24), pp. 99489954.
    23. 23)
      • 7. Cohen, A., Ross Anderson, H., Ostro, B., et al: ‘Chapter 17: urban air pollution’. Comparative Quantification of Health Risks; Global and Regional Burden of Diseases Attributable to Selected Major Risk Factors, 2004, https://www.who.int/healthinfo/global_burden_disease/cra/en/.
    24. 24)
      • 30. Begum, F., Abas, P.E.: ‘Near infrared supercontinuum generation in silica based photonic crystal fiber’, Prog. Electromagn. Res. C, 2019, 89, pp. 149159.
    25. 25)
      • 35. Hoang Tuan, T., Nishiharaguchi, N., Suzuki, T., et al: ‘Fabrication of a Novel Tellurite Hollow Core Optical Fiber and Supercontinuum Light Propagation in Its Hollow Core’, 2018.
    26. 26)
      • 31. Yakasai, I.K., Rahman, A., Abas, P.E., et al: ‘Theoretical assessment of a porous core photonic crystal fiber for terahertz wave propagation’, J. Opt. Commun., 2018, pp. 111, https://www.degruyter.com/view/journals/joc/ahead-of-print/article-10.1515-joc-2018-0206/article-10.1515-joc-2018-0206.xml.
    27. 27)
      • 25. Islam, M.S., Sultana, J., Rifat, A.A., et al: ‘Terahertz sensing in a hollow core photonic crystal fiber’, IEEE Sens. J., 2018, 18, (10), pp. 40734080.
    28. 28)
      • 17. Verma, R.K., Suwalka, P., Yadav, J.: ‘Detection of adulteration in diesel and petrol by kerosene using SPR based fiber optic technique’, Opt. Fiber Technol., 2018, 43, pp. 95100.
    29. 29)
      • 18. Yakasai, I., Abas, E., Kaijage, S.F., et al: ‘Proposal for a quad-elliptical photonic crystal fiber for terahertz wave guidance and sensing chemical warfare liquids’, Photonics., 2019, 6, (3), pp. 116.
    30. 30)
      • 9. Shahru Bahari, M., Criddie, W.J., Thomas, J.D.R.: ‘Determination of the adulteration of petrol with kerosene using a rapid phase-titration procedure’, Analyst, 1990, 115, (4), pp. 417419.
    31. 31)
      • 32. Cordeiro, C.M.B., Franco, M.A.R., Chesini, G., et al: ‘Microstructured-core optical fibre for evanescent sensing applications’, Opt. Express, 2006, 14, (26), pp. 1305613066.
    32. 32)
      • 27. De, M., Pathak, A.K., Singh, V.K.: ‘Single channel photonic crystal fiber based high sensitive petrol adulteration detection sensor’, Optik (Stuttg)., 2019, 183, pp. 539546.
    33. 33)
      • 4. Kalligeros, S., Zannikos, F., Stournas, S., et al: ‘Fuel adulteration issues in Greece’, Energy, 2003, 28, (1), pp. 1526.
    34. 34)
      • 22. Habib, M.A., Anower, M.S., Abdulrazak, L.F., et al: ‘Hollow core photonic crystal fiber for chemical identification in terahertz regime’, Opt. Fiber Technol., 2019, 52, (101933), pp. 16.
    35. 35)
      • 33. Yakasai, I.K., Abas, P.E., Ali, S., et al: ‘Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation’, Opt. Quantum Electron., 2019, 51, (4), pp. 116.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2019.0141
Loading

Related content

content/journals/10.1049/iet-opt.2019.0141
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading