Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Review of advanced techniques for multi-gigabit visible light communication

Visible light communication (VLC) is a promising candidate for future indoor wireless communication. Light emitting diodes (LEDs) are popular choices as transmitters for VLC, since they are energy efficient and have the ability to provide illumination and data transmission simultaneously. VLC is attractive for reasons such as security, the ability to use a licence free spectrum, and broad bandwidth. Previous review articles on VLC mainly focused on VLC network algorithms, implementation challenges, system design, applications, and physical layer technologies. Unlike the existing reviews, this study presents state-of-the-art VLC systems for high-speed data communication in the gigabit range and the techniques to achieve such high data rates. In addition, concepts such as LED modelling and fabrication process, recent commercial advancements of VLC products, and hybrid/heterogeneous networks to achieve high data rate are highlighted in this study. For this purpose, some key technologies of VLC systems, including channel equalisation from both transmitter and receiver sides, higher-order modulation techniques, wavelength division multiplexing, multiple input multiple output technology, LED modelling, and advanced fabrication processes are discussed. This study also covers recent advancements in commercialisation of VLC technology, and recent progress made by various research groups.

References

    1. 1)
      • 78. Kashani, M.A., Kavehrad, M.: ‘On the performance of single-and multi-carrie modulation schemes for indoor visible light communication systems’. 2014 Global Communications Conf. (GLOBECOM), Austin, TX, USA, 2014, pp. 20842089.
    2. 2)
      • 9. Lyall, F.: ‘International communications’ (The International Telecommunication Union and the Universal Postal Union, Routledge, 2016).
    3. 3)
      • 3. https://www.navigantresearch.com/blog/leds-experience-growth-but-commercial-lighting-market-revenue-declines.
    4. 4)
      • 159. Galli, S., Scaglione, A., Wang, Z.: ‘For the grid and through the grid: the role of power line communications in the smart grid’, Proc. IEEE, 2011, 99, pp. 9981027.
    5. 5)
      • 51. Liao, C.-L., Chang, Y.-F., Ho, C.-L., et al: ‘High-speed GaN-based blue light-emitting diodes with gallium-doped Zno current spreading layer’, IEEE Electron Device Lett.., 2013, 34, pp. 611613.
    6. 6)
      • 117. Zeng, L., O'Brien, D.C., Le Minh, H., et al: ‘High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting’, IEEE J. Sel. Areas Commun., 2009, 27, pp. 16541662.
    7. 7)
      • 155. Wang, Y., Chi, N., Wang, Y., et al: ‘Network architecture of a high-speed visible light communication local area network’, IEEE Photonics Technol. Lett., 2014, 27, pp. 197200.
    8. 8)
      • 162. Yan, Y., Ding, W., Yang, H., et al: ‘The video transmission platform for the PLC and VLC integrated system’. 2015 IEEE Int. Symp. on Broadband Multimedia Systems and, Broadcasting, Ghent, Belgium, 2015, pp. 15.
    9. 9)
      • 72. Rea, M.S.: ‘The IESNA lighting handbook: reference & application’, 2000.
    10. 10)
      • 114. Tsonev, D., Chun, H., Rajbhandari, S., et al: ‘A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride μLED’, IEEE Photonics Technol. Lett., 2014, 26, pp. 637640.
    11. 11)
      • 169. Internet: ‘Available at p. www.vlncomm.com, 26/05/2019.
    12. 12)
      • 67. Zhu, S.-C., Yu, Z.-G., Zhao, L.-X., et al: ‘Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons’, Opt. Express, 2015, 23, pp. 1375213760.
    13. 13)
      • 64. Lan, H.-Y., Tseng, I.-C., Kao, H.-Y., et al: ‘752-MHz modulation bandwidth of high-speed blue micro light-emitting diodes’, IEEE J. Quantum Electron., 2018, 54, pp. 16.
    14. 14)
      • 43. Noshad, M., Brandt-Pearce, M.: ‘Application of expurgated PPM to indoor visible light communications—part II: access networks’, J. Lightwave Technol., 2014, 32, pp. 883890.
    15. 15)
      • 34. Khan, L.U.: ‘Visible light communication: applications, architecture, standardization and research challenges’, Digit. Commun. Netw., 2017, 3, pp. 7888.
    16. 16)
      • 16. Tanaka, Y., Haruyama, S., Nakagawa, M.: ‘Wireless optical transmissions with white colored LED for wireless home links’. 2000 The 11th IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC 2000), London, UK, 2000, pp. 13251329.
    17. 17)
      • 177. Medina, C., Zambrano, M., Navarro, K.: ‘Led based visible light communication: technology, applications and challenges-a survey’, Int. J. Adv. Eng. Technol., 2015, 8, p.482.
    18. 18)
      • 141. Basnayaka, D.A., Haas, H.: ‘Hybrid RF and VLC systems: improving user data rate performance of VLC systems’. 2015 IEEE 81st Vehicular Technology Conf. (VTC Spring), Glasgow, UK, 2015, pp. 15.
    19. 19)
      • 70. Kim, D.Y., Han, N., Jeong, H., et al: ‘Pressure-dependent growth of wafer-scale few-layer h-BN by metal–organic chemical vapor deposition’, Cryst. Growth Des., 2017, 17, pp. 25692575.
    20. 20)
      • 166. Feng, L., Hu, R.Q., Wang, J., et al: ‘Applying VLC in 5G networks: architectures and key technologies’, IEEE Netw., 2016, 30, pp. 7783.
    21. 21)
      • 94. Burton, A., Bentley, E., Le Minh, H., et al: ‘Experimental demonstration of a 10BASE-T ethernet visible light communications system using white phosphor light-emitting diodes’, IET Circuits Devices Syst., 2014, 8, pp. 322330.
    22. 22)
      • 7. Wang, C.-X., Haider, F., Gao, X., et al: ‘Cellular architecture and key technologies for 5G wireless communication networks’, IEEE Commun. Mag., 2014, 52, pp. 122130.
    23. 23)
      • 132. Collins, S., Mulyawan, R., Rajbhandari, S., et al: ‘A simple wide field of view concentrator for free space visible light communications’. 2015 Summer Topicals Meeting Series (SUM), Nassau, Bahamas, 2015, pp. 4344.
    24. 24)
      • 71. Nakamura, S., Iwasa, N., Senoh, M.: ‘Method of manufacturing p-type compound semiconductor’, ed: Google Patents, 1994.
    25. 25)
      • 152. Schmid, S., Ziegler, J., Corbellini, G., et al: ‘Using consumer LED light bulbs for low-cost visible light communication systems’. Proc. of the 1st ACM MobiCom Workshop on Visible Light Communication Systems, New York, USA, 2014, pp. 914.
    26. 26)
      • 15. Ho, K.-T., Chen, R., Liu, G., et al: ‘3.2 gigabit-per-second visible light communication link with InGaN/GaN MQW micro-photodetector’, Opt. Express, 2018, 26, pp. 30373045.
    27. 27)
      • 26. Chun, H., Rajbhandari, S., Tsonev, D., et al: ‘Visible light communication using laser diode based remote phosphor technique’. 2015 IEEE Int. Conf. on Communication Workshop (ICCW), London, UK, 2015, pp. 13921397.
    28. 28)
      • 119. Fath, T., Haas, H.: ‘Performance comparison of MIMO techniques for optical wireless communications in indoor environments’, IEEE Trans. Commun., 2013, 61, pp. 733742.
    29. 29)
      • 41. Oh, H.S., Joo, J.H., Lee, J.H., et al: ‘Structural optimization of high-power algainp resonant cavity light-emitting diodes for visible light communications’, Jpn. J. Appl. Phys., 2008, 47, p. 6214.
    30. 30)
      • 14. Alatawi, A.A., Holguin-Lerma, J.A., Kang, C.H., et al: ‘High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication’, Opt. Express, 2018, 26, pp. 2635526364.
    31. 31)
      • 128. Olanrewaju, H.G., Thompson, J., Popoola, W.O.: ‘Performance of optical spatial modulation in indoor multipath channel’, IEEE Trans. Wirel. Commun., 2018, 17, pp. 60426052.
    32. 32)
      • 24. Borogovac, T., Rahaim, M.B., Tuganbayeva, M., et al: ‘Lights-off’ visible light communications’. GLOBECOM Workshops (GC Wkshps, 2011), Houston, TX, USA, 2011, pp. 797801.
    33. 33)
      • 167. ‘PureLifi’, pp. https://purelifi.com/consumer-ready-gigabit-lifi-to-be-demonstrated-at-mobile-world-congress/.
    34. 34)
      • 164. Khalid, A., Cossu, G., Corsini, R., et al: ‘Demonstrating a hybrid radio-over-fibre and visible light communication system’, Electron. Lett., 2011, 47, pp. 11361137.
    35. 35)
      • 76. Zukauskas, A., Shur, M.S., Gaska, R.: ‘Introduction to solid-state lighting 122’ (John Wiley & Sons, New York, 2002).
    36. 36)
      • 25. Kwon, J.K.: ‘Inverse source coding for dimming in visible light communications using NRZ-OOK on reliable links’, IEEE Photonics Technol. Lett., 2010, 22, pp. 14551457.
    37. 37)
      • 133. Burton, A., Minh, H., Ghassemlooy, Z., et al: ‘Experimental demonstration of 50-Mb/s visible light communications using 4 × 4 MIMO’, IEEE Photonics Technol. Lett., 2014, 26, pp. 945948.
    38. 38)
      • 83. Wu, X., Hu, F., Liang, S.: ‘High speed geometrically shaped 8-QAM modulation based underwater visible light communication system’. Conf. on Lasers and Electro-Optics/Pacific Rim, Hong Kong, China, 2018, p. Th4I. 6.
    39. 39)
      • 65. Rajabi, K., Wang, J., Jin, J., et al: ‘Improving modulation bandwidth of c-plane GaN-based light-emitting diodes by an ultra-thin quantum wells design’, Opt. Express, 2018, 26, pp. 2498524991.
    40. 40)
      • 127. Hussein, H.S., Hagag, M.: ‘Optical MIMO-OFDM with fully generalized index-spatial LED modulation’, IEEE Commun. Lett., 2019, 23, pp. 15561559.
    41. 41)
      • 153. Dietz, P., Yerazunis, W., Leigh, D.: ‘Very low-cost sensing and communication using bidirectional LEDs’. Int. Conf. on Ubiquitous Computing, Berlin, Germany, 2003, pp. 175191.
    42. 42)
      • 80. Wang, T.Q., He, C., Armstrong, J.: ‘Performance analysis of aperture-based receivers for MIMO IM/DD visible light communications’, J. Lightwave Technol., 2017, 35, pp. 15131523.
    43. 43)
      • 101. Wang, Y., Li, R., Wang, Y., et al: ‘3.25-Gbps visible light communication system based on single carrier frequency domain equalization utilizing an RGB LED’. Optical Fiber Communication Conf., San Francisco, CA, USA, 2014, p. Th1F. 1.
    44. 44)
      • 106. Bian, R., Tavakkolnia, I., Haas, H.: ‘10.2 gb/s visible light communication with off-the-shelf LEDs’. 2018 European Conf. on Optical Communication (ECOC), Rome, Italy, 2018, pp. 13.
    45. 45)
      • 47. Komine, T., Nakagawa, M.: ‘Fundamental analysis for visible-light communication system using LED lights’, IEEE Trans. Consumer Electron., 2004, 50, pp. 100107.
    46. 46)
      • 121. Chau, Y.A., Yu, S.-H.: ‘Space modulation on wireless fading channels’. 2001 IEEE VTS 54th Vehicular Technology Conf. (VTC 2001 Fall), Atlantic City, NJ, USA, 2001, pp. 16681671.
    47. 47)
      • 98. Li, G., Hu, F., Zhao, Y., et al: ‘Enhanced performance of a phosphorescent white LED CAP 64QAM VLC system utilizing deep neural network (DNN) post equalization’. 2019 IEEE/CIC Int. Conf. on Communications in China (ICCC), Changchun, China, 2019, pp. 173176.
    48. 48)
      • 56. Liu, M., Li, K., Kong, F.-M., et al: ‘Enhanced light-extraction efficiency of GaN-based light-emitting diodes with hybrid photonic crystals’, Opt. Quantum Electron., 2015, 47, pp. 25932604.
    49. 49)
      • 170. ‘Signify’: Available at, pp. https://www.signify.com/global/our-company/about-us 26/05/2019 Internet.
    50. 50)
      • 63. Ferreira, R.X., Xie, E., McKendry, J.J., et al: ‘High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications’, IEEE Photonics Technol. Lett., 2016, 28, pp. 20232026.
    51. 51)
      • 68. Ahsan, M.S., Hossain, M.R., Mehbuba, S., et al: ‘Efficiency improvement of organic light emitting diodes (OLEDs) using micro/nano-structures’. 2016 3rd Int. Conf. on Electrical Engineering and Information Communication Technology (ICEEICT), Dhaka, Bangladesh, 2016, pp. 16.
    52. 52)
      • 50. Li, S., Waag, A.: ‘Gan based nanorods for solid state lighting’, J. Appl. Phys., 2012, 111, p. 5.
    53. 53)
      • 104. Bian, R., Tavakkolnia, I., Haas, H.: ‘15.73 gb/s visible light communication with off-the-shelf LEDs’, J. Lightwave Technol., 2019, 37, pp. 24182424.
    54. 54)
      • 13. Shen, C., Lee, C., Ng, T.K., et al: ‘High-speed 405-nm superluminescent diode (SLD) with 807-MHz modulation bandwidth’, Opt. Express, 2016, 24, pp. 2028120286.
    55. 55)
      • 84. Li, X., Min, C., Gao, S., et al: ‘A CDMA-based high-speed multi-access VLC system with OOK modulation’, Opt. Commun., 2019, 451, pp. 147152.
    56. 56)
      • 42. Chun, H., Chiang, C.-J., O'Brien, D.C.: ‘Visible light communication using OLEDs: illumination and channel modeling’. 2012 Int. Workshop on Optical Wireless Communications (IWOW), Pisa, ltaly, 2012, pp. 13.
    57. 57)
      • 122. Mesleh, R., Elgala, H., Haas, H.: ‘Optical spatial modulation’, IEEE/OSA J. Opt. Commun. Netw., 2011, 3, pp. 234244.
    58. 58)
      • 22. Yesilkaya, A., Bian, R., Tavakkolnia, I., et al: ‘OFDM-based optical spatial modulation’, IEEE J. Sel. Top. Signal Process., 2019, 13, pp. 14331444.
    59. 59)
      • 88. Wang, Y., Huang, X., Tao, L., et al: ‘4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization’, Opt. Express, 2015, 23, pp. 1362613633.
    60. 60)
      • 134. Jiang, F., Deng, H., Xiao, W., et al: ‘An ICA based MIMO-OFDM VLC scheme’, Opt. Commun., 2015, 347, pp. 3743.
    61. 61)
      • 116. Manousiadis, P., Chun, H., Rajbhandari, S., et al: ‘Demonstration of 2.3 Gb/s RGB white-light VLC using polymer based color-converters and GaN micro-LEDs’. Summer Topicals Meeting Series (SUM 2015), Nassau, Bahamas, 2015, pp. 222223.
    62. 62)
      • 75. Vucic, J., Kottke, C., Nerreter, S., et al: ‘125 mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs’. 2009 35th European Conf. on Optical Communication (ECOC'09), Vienna, Austria, 2009, pp. 12.
    63. 63)
      • 171. Sahiti, S., Amani, D., Pallavi, D.: ‘A REVIEW on LI-FI (LIGHT-FEDILITY)’.
    64. 64)
      • 176. Tang, S., Kalavally, V., Ng, K.Y., et al: ‘Development of a prototype smart home intelligent lighting control architecture using sensors onboard a mobile computing system’, Energy Build., 2017, 138, pp. 368376.
    65. 65)
      • 53. Wun, J.-M., Lin, C.-W., Chen, W., et al: ‘Gan-based miniaturized cyan light-emitting diodes on a patterned sapphire substrate with improved fiber coupling for very high-speed plastic optical fiber communication’, IEEE Photonics J., 2012, 4, pp. 15201529.
    66. 66)
      • 30. Lian, J., Vatansever, Z., Noshad, M., et al: ‘Indoor visible light communications, networking, applications’, J. Phys., Photonics, 2019, 1, p. 012001.
    67. 67)
      • 37. Steigerwald, D.A., Bhat, J.C., Collins, D., et al: ‘Illumination with solid state lighting technology’, IEEE J. Sel. Top. Quantum Electron., 2002, 8, pp. 310320.
    68. 68)
      • 113. Wang, F., Liu, Y., Shi, M., et al: ‘3.075 gb/s underwater visible light communication utilizing hardware pre-equalizer with multiple feature points’, Opt. Eng., 2019, 58, p. 056117.
    69. 69)
      • 165. Rangan, S., Rappaport, T.S., Erkip, E.: ‘Millimeter wave cellular wireless networks: potentials and challenges’, arXiv preprint arXiv:1401.2560, 2014.
    70. 70)
      • 140. Hsu, C.-W., Chow, C.-W., Lu, I.-C., et al: ‘High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system’, IEEE Photonics J., 2016, 8, pp. 16.
    71. 71)
      • 172. Jovicic, A., Li, J., Richardson, T.: ‘Visible light communication: opportunities, challenges and the path to market’, IEEE Commun. Mag., 2013, 51, pp. 2632.
    72. 72)
      • 49. Du, C., Huang, X., Jiang, C., et al: ‘Tuning carrier lifetime in InGaN/GaN LEDs via strain compensation for high-speed visible light communication’, Sci. Rep., 2016, 6, p. 37132.
    73. 73)
      • 20. Chen, C., Basnayaka, D., Purwita, A.A., et al: ‘Physical layer performance evaluation of wireless infrared-based LiFi uplink’, arXiv preprint arXiv:1904.13163, 2019.
    74. 74)
      • 23. Islim, M.S., Ferreira, R.X., He, X., et al: ‘Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED’, Photonics Res., 2017, 5, pp. A35A43.
    75. 75)
      • 145. Naribole, S., Chen, S., Heng, E., et al: ‘Lira: A WLAN architecture for visible light communication with a Wi-Fi uplink’. 2017 14th Annual IEEE Int. Conf. on Sensing, Communication, Networking (SECON), San Diego, CA, USA, 2017, pp. 19.
    76. 76)
      • 10. O'Brien, D., Le Minh, H., Zeng, L., et al: ‘Indoor visible light communications: challenges and prospects’. Free-Space Laser Communications VIII, California, USA, 2008, p. 709106.
    77. 77)
      • 11. Javaudin, J.-P.: ‘Home gigabit access (OMEGA) project’, 2010.
    78. 78)
      • 54. Koester, R., Sager, D., Quitsch, W.-A., et al: ‘High-speed GaN/GaInN nanowire array light-emitting diode on silicon (111)’, Nano Lett.., 2015, 15, pp. 23182323.
    79. 79)
      • 123. Butala, P.M., Elgala, H., Little, T.D.: ‘Performance of optical spatial modulation and spatial multiplexing with imaging receiver’. 2014 IEEE Wireless Communications and Networking Conf. (WCNC), Istanbul, Turkey, 2014, pp. 394399.
    80. 80)
      • 146. Liverman, S., Wang, Q., Chu, Y.-J., et al: ‘WiFO: a hybrid communication network based on integrated free-space optical and WiFi femtocells’, Comput. Commun., 2018, 132, pp. 7483.
    81. 81)
      • 39. Pessa, M., Guina, M., Dumitrescu, M., et al: ‘Resonant cavity light emitting diode for a polymer optical fibre system’, Semicond. Sci. Technol., 2002, 17, p. R1.
    82. 82)
      • 105. Zhou, Y., Zhu, X., Hu, F., et al: ‘Common-anode LED on a Si substrate for beyond 15 Gbit/s underwater visible light communication’, Photonics Res., 2019, 7, pp. 10191029.
    83. 83)
      • 74. Park, S., Jung, D., Shin, H., et al: ‘Information broadcasting system based on visible light signboard’. Proc. Wirel. Opt. Commun., India, 2007, pp. 311313.
    84. 84)
      • 48. Zhu, S.-C., Zhao, L.-X., Yang, C., et al: ‘Gan-based flip-chip parallel micro LED array for visible light communication’. Int. Conf. on Optoelectronics and Microelectronics Technology and Application, Shanghai, China, 2017, p. 102441Y.
    85. 85)
      • 38. Le Minh, H., O'Brien, D., Faulkner, G., et al: ‘80 mbit/s visible light communications using pre-equalized white LED’. 34th European Conf. on Optical Communication 2008 (ECOC 2008), Brussels, Belgium, 2008, pp. 12.
    86. 86)
      • 27. Hranilovic, S., Kschischang, F.R.: ‘A pixelated MIMO wireless optical communication system’, IEEE J. Sel. Top. Quantum Electron., 2006, 12, pp. 859874.
    87. 87)
      • 82. Zheng, D., Zhang, H., Pan, C., et al: ‘Scaling QAM technique for LED-based visible light communication system with signal-related noise’. 2019 IEEE Int. Conf. on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russia, 2019, pp. 157160.
    88. 88)
      • 58. Pan, J.-W., Tsai, P.-J., Chang, K.-D., et al: ‘Light extraction efficiency analysis of GaN-based light-emitting diodes with nanopatterned sapphire substrates’, Appl. Opt., 2013, 52, pp. 13581367.
    89. 89)
      • 32. Luo, J., Fan, L., Li, H.: ‘Indoor positioning systems based on visible light communication: state of the art’, IEEE Commun. Surv. Tutor., 2017, 19, pp. 28712893.
    90. 90)
      • 44. Singh, R., O'Farrell, T., David, J.P.: ‘Performance evaluation of IEEE 802.15. 7 CSK physical layer’. Globecom Workshops (GC Wkshps 2013), Atlanta, GA, USA, 2013, pp. 10641069.
    91. 91)
      • 125. Jha, M.K., Kumar, N., Lakshmi, Y.: ‘Generalized spatial modulation for multi-user in visible light communication’. 2019 28th Wireless and Optical Communications Conf. (WOCC), Beijing, China, 2019, pp. 15.
    92. 92)
      • 148. Kashef, M., Ismail, M., Abdallah, M., et al: ‘Energy efficient resource allocation for mixed RF/VLC heterogeneous wireless networks’, IEEE J. Sel. Areas Commun., 2016, 34, pp. 883893.
    93. 93)
      • 160. Hu, P., Pathak, P.H., Das, A.K., et al: ‘PLifi: hybrid WiFi-VLC networking using power lines’. Proc. of the 3rd Workshop on Visible Light Communication Systems, New York, USA, 2016, pp. 3136.
    94. 94)
      • 2. Nakamura, S.: ‘Present performance of InGaN-based blue/green/yellow LEDs’. Light-Emitting Diodes: Research, Manufacturing, Applications, San Jose, CA, USA, 1997, pp. 2636.
    95. 95)
      • 102. Zhou, Y., Zhao, J., Zhang, M., et al: ‘2.32 gbit/s phosphorescent white LED visible light communication aided by two-staged linear software equalizer’. 2016 10th Int. Symp. on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Prague, Czech Republic, 2016, pp. 14.
    96. 96)
      • 17. Cossu, G., Presi, M., Corsini, R., et al: ‘A visible light localization aided optical wireless system’. GLOBECOM Workshops (GC Wkshps 2011), Houston, TX, USA, 2011, pp. 802807.
    97. 97)
      • 87. Cui, L., Tang, Y., Jia, H., et al: ‘Analysis of the multichannel WDM-VLC communication system’, J. Lightwave Technol., 2016, 34, pp. 56275634.
    98. 98)
      • 103. Huang, X., Wang, Z., Shi, J., et al: ‘1.6 gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver’, Opt. Express, 2015, 23, pp. 2203422042.
    99. 99)
      • 163. Song, J., Liu, S., Zhou, G., et al: ‘A cost-effective approach for ubiquitous broadband access based on hybrid PLC-VLC system’. 2016 IEEE Int. Symp. on Circuits and Systems (ISCAS), Montreal, Canada, 2016, pp. 28152818.
    100. 100)
      • 77. Armstrong, J., Schmidt, B.J.: ‘Comparison of asymmetrically clipped optical OFDM and DC-biased optical OFDM in AWGN’, IEEE Commun. Lett., 2008, 12, pp. 343345.
    101. 101)
      • 60. Fattal, D., Fiorentino, M., Tan, M., et al: ‘Design of an efficient light-emitting diode with 10 GHz modulation bandwidth’, Appl. Phys. Lett., 2008, 93, p. 243501.
    102. 102)
      • 118. O'Brien, D.: ‘Multi-input multi-output (MIMO) indoor optical wireless communications’. 2009 Conf. Record of the Forty-Third Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, 2009, pp. 16361639.
    103. 103)
      • 59. Demory, B., Chung, K., Katcher, A., et al: ‘Integrated parabolic nanolenses on MicroLED color pixels’, Nanotechnology, 2018, 29, p. 165201.
    104. 104)
      • 173. Rihawi, Z.S., Mutalip, Z.A., Green, R.J., et al: ‘Free-space optical communications in vehicular networks using rectangular guiding models’, IEEE Photonics Technol. Lett., 2016, 28, pp. 14301433.
    105. 105)
      • 124. Kim, J., Moon, S., Kim, Y., et al: ‘Optical spatial modulation with polar coordinate for optical wireless communication system’. 2019 Eleventh Int. Conf. on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2019, pp. 653655.
    106. 106)
      • 92. Huang, X., Shi, J., Li, J., et al: ‘A Gb/s VLC transmission using hardware preequalization circuit’, IEEE Photonics Technol. Lett., 2015, 27, pp. 19151918.
    107. 107)
      • 139. Hsu, C.-W., Lu, I.-C., Liu, Y.-L., et al: ‘Demonstration of high speed imaging 3 × 3 MIMO-OFDM visible light communication system’. 2016 Photonics Conf. (IPC), Waikoloa, HI, USA, 2016, pp. 729730.
    108. 108)
      • 174. Arnon, S.: ‘Underwater optical wireless communication network’, Opt. Eng., 2010, 49, pp. 015001015001–6.
    109. 109)
      • 144. Shao, S., Khreishah, A., Ayyash, M., et al: ‘Design and analysis of a visible-light-communication enhanced WiFi system’, J. Opt. Commun. Netw., 2015, 7, pp. 960973.
    110. 110)
      • 151. Schmid, S., Corbellini, G., Mangold, S., et al: ‘LED-to-LED visible light communication networks’. Proc. of the fourteenth ACM Int. Symp. on Mobile ad hoc Networking and Computing, New York, USA, 2013, pp. 110.
    111. 111)
      • 19. Rahaim, M.B., Vegni, A.M., Little, T.D.: ‘A hybrid radio frequency and broadcast visible light communication system’. GLOBECOM Workshops (GC Wkshps 2011), Houston, TX, USA, 2011, pp. 792796.
    112. 112)
      • 138. Ijaz, M., Tsonev, D., McKendry, J.J., et al: ‘Experimental proof-of-concept of optical spatial modulation OFDM using micro LEDs’. 2015 IEEE Int. Conf. on Communication Workshop (ICCW), London, UK, 2015, pp. 13381343.
    113. 113)
      • 175. Philips Hue, C.L.: Philips Corporation, Amsterdam, Netherlands, 2017.
    114. 114)
      • 31. Rehman, S.U., Ullah, S., Chong, P.H.J., et al: ‘Visible light communication: A system perspective—overview and challenges’, Sensors, 2019, 19, p. 1153.
    115. 115)
      • 149. Janjua, B., Oubei, H.M., Retamal, J.R.D., et al: ‘Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication’, Opt. Express, 2015, 23, pp. 1874618753.
    116. 116)
      • 28. Rajbhandari, S., Jalajakumari, A.V., Chun, H., et al: ‘A multi-Gigabit/sec integrated multiple input multiple output VLC demonstrator’, J. Lightwave Technol., 2017, 35, pp. 43584365.
    117. 117)
      • 96. Guan, W., Chen, X., Li, J., et al: ‘High speed novel hybrid modulation technique of visible light communication based on artificial neural network equalizer’. 2018 IEEE 3rd Optoelectronics Global Conf. (OGC), Shenzhen, China, 2018, pp. 916.
    118. 118)
      • 93. Le Minh, H., O'Brien, D., Faulkner, G., et al: ‘100-Mb/s NRZ visible light communications using a postequalized white LED’, IEEE Photonics Technol. Lett., 2009, 21, pp. 10631065.
    119. 119)
      • 29. Rajbhandari, S., Chun, H., Faulkner, G., et al: ‘High-speed integrated visible light communication system: device constraints and design considerations’, IEEE J. Sel. Areas Commun., 2015, 33, pp. 17501757.
    120. 120)
      • 142. Boucouvalas, A., Chatzimisios, P., Ghassemlooy, Z., et al: ‘Standards for indoor optical wireless communications’, IEEE Commun. Mag., 2015, 53, pp. 2431.
    121. 121)
      • 35. Islim, M.S., Haas, H.: ‘Modulation techniques for Li-Fi’, ZTE Commun., 2016, 14, pp. 2940.
    122. 122)
      • 99. Chi, N., Zhou, Y., Shi, J., et al: ‘Enabling technologies for high speed visible light communication’. Optical Fiber Communication Conf., Los Angeles, CA, USA, 2017, p. Th1E. 3.
    123. 123)
      • 73. Wang, Y., Wang, Y., Chi, N.: ‘Experimental verification of performance improvement for a gigabit wavelength division multiplexing visible light communication system utilizing asymmetrically clipped optical orthogonal frequency division multiplexing’, Photonics Res., 2014, 2, pp. 138142.
    124. 124)
      • 107. Cossu, G., Wajahat, A., Corsini, R., et al: ‘5.6 gbit/s downlink and 1.5 Gbit/s uplink optical wireless transmission at indoor distances (≥ 1.5 m)’. 2014 European Conf. on Optical Communication (ECOC), Cannes, France, 2014, pp. 13.
    125. 125)
      • 97. Rajbhandari, S., Chun, H., Faulkner, G., et al: ‘Neural network-based joint spatial and temporal equalization for MIMO-VLC system’, IEEE Photonics Technol. Lett., 2019, 31, pp. 821824.
    126. 126)
      • 45. Lee, S.H., Jung, S.-Y., Kwon, J.K.: ‘Modulation and coding for dimmable visible light communication’, IEEE Commun. Mag., 2015, 53, pp. 136143.
    127. 127)
      • 168. ‘Lifi Application’, pp. https://www.lifitn.com/blog/2018/8/30/5-applications-of-li-fi-technology.
    128. 128)
      • 150. Hussein, A.T., Elmirghani, J.M.: ‘10 gbps mobile visible light communication system employing angle diversity, imaging receivers, relay nodes’, J. Opt. Commun. Netw., 2015, 7, pp. 718735.
    129. 129)
      • 62. Rashidi, A., Monavarian, M., Aragon, A., et al: ‘Nonpolar ${m}$-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth’, IEEE Electron Device Lett.., 2018, 39, pp. 520523.
    130. 130)
      • 46. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: ‘Optical wireless communications: system and channel modelling with Matlab®’ (CRC Press, New York, USA, 2012).
    131. 131)
      • 86. Noshad, M., Brandt-Pearce, M.: ‘Hadamard coded modulation: an alternative to OFDM for wireless optical communications’. 2014 IEEE Global Communications Conf., Austin, TX, USA, 2014, pp. 21022107.
    132. 132)
      • 55. Zhao, P., Zhao, H.: ‘Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes’, Opt. Express, 2012, 20, pp. A765A776.
    133. 133)
      • 61. Chen, H., Fu, H., Lu, Z., et al: ‘Optical properties of highly polarized InGaN light-emitting diodes modified by plasmonic metallic grating’, Opt. Express, 2016, 24, pp. A856A867.
    134. 134)
      • 156. Li, S., Pandharipande, A., Willems, F.M.: ‘Two-way visible light communication and illumination with LEDs’, IEEE Trans. Commun., 2016, 65, pp. 740750.
    135. 135)
      • 95. Liao, C.-L., Ho, C.-L., Chang, Y.-F., et al: ‘High-speed light-emitting diodes emitting at 500 nm with 463-MHz modulation bandwidth’, IEEE Electron Device Lett., 2014, 35, pp. 563565.
    136. 136)
      • 147. Khreishah, A., Shao, S., Gharaibeh, A., et al: ‘A hybrid RF-VLC system for energy efficient wireless access’, IEEE Trans. Green Commun. Netw., 2018, 2, pp. 932944.
    137. 137)
      • 157. Yeh, C.-H., Wei, L.-Y., Chow, C.-W.: ‘Using a single VCSEL source employing OFDM downstream signal and remodulated OOK upstream signal for bi-directional visible light communications’, Sci. Rep., 2017, 7, p. 15846.
    138. 138)
      • 52. Maaskant, P.P., Shams, H., Akhter, M., et al: ‘High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance’, Appl. Phys. Express, 2013, 6, p. 022102.
    139. 139)
      • 154. Schmid, S., Ziegler, J., Gross, T.R., et al: ‘(In) visible light communication: combining illumination and communication’. ACM SIGGRAPH 2014 Emerging Technologies, New York, USA, 2014, p. 13.
    140. 140)
      • 110. Lee, C., Zhang, C., Cantore, M., et al: ‘4 gbps direct modulation of 450 nm GaN laser for high-speed visible light communication’, Opt. Express, 2015, 23, pp. 1623216237.
    141. 141)
      • 108. Shi, M., Wang, C., Li, G., et al: ‘A 5Gb/s $2\times 2$ MIMO real-time visible light communication system based on silicon substrate LEDs’. 2019 Global LIFI Congress (GLC), 2019, pp. 1–5.
    142. 142)
      • 8. Chen, S., Zhao, J., Peng, Y.: ‘The development of TD-SCDMA 3G to TD-LTE-advanced 4G from 1998 to 2013’, IEEE Wirel. Commun., 2014, 21, pp. 167176.
    143. 143)
      • 143. Alresheedi, M.T., Hussein, A.T., Elmirghani, J.M.: ‘Uplink design in VLC systems with IR sources and beam steering’, IET Commun., 2017, 11, pp. 311317.
    144. 144)
      • 111. Chi, N., Zhang, M., Zhou, Y., et al: ‘3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding’, Opt. Express, 2016, 24, pp. 2166321673.
    145. 145)
      • 109. Xie, E., He, X., Islim, M.S., et al: ‘High-speed visible light communication based on a III-nitride series-biased micro-LED array’, J. Lightwave Technol., 2019, 37, pp. 11801186.
    146. 146)
      • 131. Tse, D., Viswanath, P.: ‘Fundamentals of wireless communication’ (Cambridge University Press, New York, USA, 2005).
    147. 147)
      • 21. Wu, X., Haas, H.: ‘Handover skipping for LiFi’, IEEE Access, 2019, 7, pp. 3836938378.
    148. 148)
      • 33. Cailean, A., Dimian, M.: ‘Current challenges for visible light communications usage in vehicle applications: a survey’, IEEE Commun. Surv. Tutor., 2017, 19, pp. 26812703.
    149. 149)
      • 1. Penning, J., Stober, K., Taylor, V., et al: ‘Energy savings forecast of solid-state lighting in general illumination applications’ (Navigant Consulting Inc., Washington, DC, United States, 2016).
    150. 150)
      • 161. Ndjiongue, A.R., Ferreira, H.C., Song, J., et al: ‘Hybrid PLC-VLC channel model and spectral estimation using a nonparametric approach’, Trans. Emerg. Telecommun. Technol., 2017, 28, p. e3224.
    151. 151)
      • 91. Zhou, Y., Liang, S., Chen, S., et al: ‘2.08 gbit/s visible light communication utilizing power exponential pre-equalization’. 2016 25th Wireless and Optical Communication Conf. (WOCC), Chengdu, China, 2016, pp. 13.
    152. 152)
      • 6. Hanzo, L., Haas, H., Imre, S., et al: ‘Wireless myths, realities, futures: from 3G/4G to optical and quantum wireless’, Proc. IEEE, 2012, 100, pp. 18531888.
    153. 153)
      • 137. Popoola, W.O., Poves, E., Haas, H.: ‘Error performance of generalised space shift keying for indoor visible light communications’, IEEE Trans. Commun., 2013, 61, pp. 19681976.
    154. 154)
      • 81. Marshoud, H., Muhaidat, S., Sofotasios, P.C., et al: ‘Optical asymmetric modulation for VLC systems’, 2018.
    155. 155)
      • 18. Chun, H., Rajbhandari, S., Faulkner, G., et al: ‘LED based wavelength division multiplexed 10 Gb/s visible light communications’, J. Lightwave Technol., 2016, 34, pp. 30473052.
    156. 156)
      • 5. Pang, G., Kwan, T., Chan, C.-H., et al: ‘LED traffic light as a communications device’. 1999 Proc. of IEEE/IEEJ/JSAI Int. Conf. on Intelligent Transportation Systems, Tokyo, Japan, 1999, pp. 788793.
    157. 157)
      • 129. Wu, L., Cheng, J., Zhang, Z., et al: ‘Low-complexity spatial modulation for IM/DD optical wireless communications’, IEEE Photonics Technol. Lett., 2019, 31, pp. 475478.
    158. 158)
      • 57. Son, T., Shin, D.S., Mageshwari, K., et al: ‘Improved light extraction efficiency and leakage characteristics in light-emitting diodes by nanorod arrays formed on hexagonal pits’, Mater. Sci. Semicond. Process., 2015, 29, pp. 380385.
    159. 159)
      • 100. Wang, Y., Tao, L., Huang, X., et al: ‘8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer’, IEEE Photonics J., 2015, 7, pp. 17.
    160. 160)
      • 136. Di Renzo, M., Haas, H., Ghrayeb, A., et al: ‘Spatial modulation for generalized MIMO: challenges, opportunities, implementation’, Proc. IEEE, 2014, 102, pp. 56103.
    161. 161)
      • 89. Zhang, M., Shi, M., Wang, F., et al: ‘4.05-Gb/s RGB LED-based VLC system utilizing PS-Manchester coded Nyquist PAM-8 modulation and hybrid time-frequency domain equalization’. Optical Fiber Communications Conf. and Exhibition (OFC 2017), Los Angeles, CA , USA, 2017, pp. 13.
    162. 162)
      • 66. He, X., Xie, E., Islim, M.S., et al: ‘1 gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm’, Photonics Res., 2019, 7, pp. B41B47.
    163. 163)
      • 69. Castro, I., Lamar, D., Arias, M., et al: ‘Multi-cell three phase ac-dc driver for HB-LED lighting applications’, IEEE Trans. Ind. Appl., 2017, 53, pp. 38033813.
    164. 164)
      • 79. Burchardt, H., Serafimovski, N., Tsonev, D., et al: ‘VLC: beyond point-to-point communication’, IEEE Commun. Mag., 2014, 52, pp. 98105.
    165. 165)
      • 40. Schubert, E.F., Wang, Y.H., Cho, A., et al: ‘Resonant cavity light-emitting diode’, Appl. Phys. Lett., 1992, 60, pp. 921923.
    166. 166)
      • 135. Deng, P., Kavehrad, M.: ‘Adaptive real-time software defined MIMO visible light communications using spatial multiplexing and spatial diversity’. 2016 IEEE Int. Conf. on Wireless for Space and Extreme Environments (WiSEE), Aachen, Germany, 2016, pp. 111116.
    167. 167)
      • 90. Oubei, H.M., Duran, J.R., Janjua, B., et al: ‘4.8 gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication’, Opt. Express, 2015, 23, pp. 2330223309.
    168. 168)
      • 115. Fahs, B., Chowdhury, A.J., Hella, M.M.: ‘A 12-m 2.5-Gb/s lighting compatible integrated receiver for OOK visible light communication links’, J. Lightwave Technol., 2016, 34, pp. 37683775.
    169. 169)
      • 12. ‘OPTICWISE’, OWC research group, p. http://opticwise.uop.gr/, 2019.
    170. 170)
      • 126. Bui, T.-C., Singh, R., O'Farrell, T., et al: ‘Performance evaluation of generalized optical spatial modulation with dimming support’. 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 2018, pp. 16.
    171. 171)
      • 36. Pathak, P.H., Feng, X., Hu, P., et al: ‘Visible light communication, networking, sensing: a survey, potential and challenges’, IEEE Commun. Surv. Tutor., 2015, 17, pp. 20472077.
    172. 172)
      • 130. Damen, O., Othman, G.R.-B.: ‘On the performance of spatial modulations over multimode optical fiber transmission channels’, IEEE Trans. Commun., 2019, 67, pp. 34703481.
    173. 173)
      • 85. Noshad, M., Brandt-Pearce, M.: ‘Hadamard-coded modulation for visible light communications’, IEEE Trans. Commun., 2016, 64, pp. 11671175.
    174. 174)
      • 4. Kadam, K., Dhage, M.R.: ‘Visible light communication for IoT’. 2016 2nd Int. Conf. on Applied and Theoretical Computing and Communication Technology (iCATccT), Bangalore, India, 2016, pp. 275278.
    175. 175)
      • 120. Takase, D., Ohtsuki, T.: ‘Optical wireless MIMO communications (OMIMO)’. 2004 Global Telecommunications Conf. (GLOBECOM'04), Dallas, TX, USA, 2004, pp. 928932.
    176. 176)
      • 112. Wu, F.-M., Lin, C.-T., Wei, C.-C., et al: ‘3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation’. 2013 Optical Fiber Communication Conf. and Exposition and the National Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, CA, USA, 2013, pp. 13.
    177. 177)
      • 158. Group, I.W.: ‘IEEE standard for broadband over power line networks: Medium access control and physical layer specifications’, Tech. Report, 2010.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2019.0120
Loading

Related content

content/journals/10.1049/iet-opt.2019.0120
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address