access icon free RF-sputtered tungsten enabled surface plasmon effect in dye sensitised solar cells

This work examined the possibility of overcoming narrow band optical absorption of organic dyes in the range of 350–700nm via surface plasmon effect mediated by RF-sputtered tungsten (W) thin film on mesoporous TiO2 for dye-sensitised solar cells (DSSCs) application. The UV–visible spectroscopic measurement showed optical absorption of W-film in the spectral range of 350–700nm with a dominant characteristic feature in the range of 350–550nm. W-thin film-coated TiO2 was used as an electron acceptor in DSSCs and observed ∼28% enhancement in short circuit current density compared to that of in a pristine TiO2-based DSSC which did not use W-thin film on TiO2. It is attributed to the local field-induced enhancement in optical absorption which resulted in improved exciton generation and effective charge transport in DSSCs enabled by W-thin film coating onto mesoporous TiO2.

Inspec keywords: coatings; visible spectra; dyes; metallic thin films; current density; surface plasmons; short-circuit currents; tungsten; porous semiconductors; mesoporous materials; ultraviolet spectra; sputtering; excitons; titanium compounds; dye-sensitised solar cells

Other keywords: short circuit current density; dye sensitised solar cells; surface plasmon effect; electron acceptor; wavelength 350.0 nm to 700.0 nm; UV-visible spectroscopic measurement; exciton generation; RF-sputtered tungsten thin film; effective charge transport; organic dyes; tungsten-thin film-coated TiO2; narrow band optical absorption; W-TiO2; local field-induced enhancement; mesoporous TiO2; DSSC

Subjects: Thin film growth, structure, and epitaxy; Photoelectrochemical conversion; Excitons and related phenomena; Collective excitations (surface states); Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures); Solar cells and arrays; Visible and ultraviolet spectra of other nonmetals

References

    1. 1)
      • 13. Liu, Y., Wang, J.: ‘Co-sensitization of TiO2 by PbS quantum dots and dye N719 in dye-sensitized solar cells’, Thin Solid Films, 2010, 518, (24), pp. e54e56.
    2. 2)
      • 8. Hughes, S., Spruce, G., Wherrett, B.S., et al: ‘The saturation limit to picosecond, induced absorption in dyes’, Opt. Commun., 1993, 100, (1–4), pp. 113117.
    3. 3)
      • 9. Pawlicki, M., Collins, H.A., Denning, R.G., et al: ‘Two-photon absorption and the design of two-photon dyes’, Angew. Chem., Int. Ed., 2009, 48, (18), pp. 32443266.
    4. 4)
      • 25. Ghodselahi, T., Arsalani, S., Neishaboorynejad, T.: ‘Synthesis and biosensor application of Ag@Au bimetallic nanoparticles based on localized surface plasmon resonance’, Appl. Surf. Sci., 2014, 301, pp. 230234.
    5. 5)
      • 23. Barreca, D., Gasparotto, A., Tondello, E., et al: ‘Influence of process parameters on the morphology of Au/SiO2 nanocomposites synthesized by radio-frequency sputtering’, J. Appl. Phys., 2004, 96, pp. 16551665.
    6. 6)
      • 1. Hagfeldt, A., Boschloo, G., Sun, L., et al: ‘Dye-sensitized solar cells’, Chem. Rev., 2010, 110, (11), pp. 65956663.
    7. 7)
      • 18. Chander, N., Khan, A.F., Thouti, E., et al: ‘Size and concentration effects of gold nanoparticles on optical and electrical properties of plasmonic dye sensitized solar cells’, Sol. Energy, 2014, 109, pp. 1123.
    8. 8)
      • 17. Muduli, S., Game, O., Dhas, V., et al: ‘Tio2–Au plasmonic nanocomposite for enhanced dye-sensitized solar cell (DSSC) performance’, Sol. Energy, 2012, 86, (5), pp. 14281434.
    9. 9)
      • 14. Schaadt, D.M., Feng, B., Yu, E.T.: ‘Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles’, Appl. Phys. Lett., 2005, 86, (6), p. 063106.
    10. 10)
      • 5. Gonçalves, L.M., de Zea Bermudez, V., Ribeiro, H.A., et al: ‘Dye-sensitized solar cells: a safe bet for the future’, Energy Environ. Sci., 2008, 1, (6), pp. 655667.
    11. 11)
      • 12. Lee, W., Min, S.K., Dhas, V., et al: ‘Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells’, Electrochem. Commun., 2009, 11, (1), pp. 103106.
    12. 12)
      • 24. Belahmar, A., Chouiyakh, A.: ‘Investigation of surface plasmon resonance and optical band gap energy in gold/silica composite films prepared by RF-sputtering’, J. Nanosci. Nanotechnol., 2016, 2, pp. 8184.
    13. 13)
      • 15. Mulvaney, P.: ‘Surface plasmon spectroscopy of nanosized metal particles’, Langmuir, 1996, 12, (3), pp. 788800.
    14. 14)
      • 6. Ye, M., Wen, X., Wang, M., et al: ‘Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes’, Mater. Today, 2015, 18, (3), pp. 155162.
    15. 15)
      • 7. Zou, W., Visser, C., Maduro, J.A., et al: ‘Broadband dye-sensitized upconversion of near-infrared light’, Nat. Photonics, 2012, 6, (8), pp. 560564.
    16. 16)
      • 19. Al-Azawi, M.A., Bidin, N., Bououdina, M., et al: ‘Preparation of gold and gold–silver alloy nanoparticles for enhancement of plasmonic dye-sensitized solar cells performance’, Sol. Energy, 2016, 126, pp. 93104.
    17. 17)
      • 2. O'regan, B., Grätzel, M.: ‘A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films’, Nature, 1991, 353, (6346), pp. 737740.
    18. 18)
      • 10. Kloo, L.: ‘On the early development of organic dyes for dye-sensitized solar cells’, Chem. Commun., 2013, 49, (59), pp. 65806583.
    19. 19)
      • 21. Gopakumar, G., Ashok, A., Vijayaraghavan, S.N., et al: ‘MoO3 surface passivation on TiO2: an efficient approach to minimize loss in fill factor and maximum power of dye sensitized solar cell’, Appl. Surf. Sci., 2018, 447, pp. 554560.
    20. 20)
      • 22. You, J.B., Zhang, X.W., Fan, Y.M., et al: ‘Surface plasmon enhanced ultraviolet emission from ZnO films deposited on Ag/Si (001) by magnetron sputtering’, Appl. Phys. Lett., 2007, 91, p. 231907.
    21. 21)
      • 3. Hardin, B.E., Snaith, H.J., McGehee, M.D.: ‘The renaissance of dye-sensitized solar cells’, Nat. Photonics, 2012, 6, (3), pp. 162169.
    22. 22)
      • 16. Li, J., Chen, X., Ai, N., et al: ‘Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells’, Chem. Phys. Lett., 2011, 514, (1–3), pp. 141145.
    23. 23)
      • 20. Petroff, P., Sheng, T.T., Sinha, A.K., et al: ‘Microstructure, growth, resistivity, and stresses in thin tungsten films deposited by RF sputtering’, J. Appl. Phys., 1973, 44, (6), pp. 25452554.
    24. 24)
      • 11. Sirohi, R., Kim, D.H., Yu, S.C., et al: ‘Novel di-anchoring dye for DSSC by bridging of two mono anchoring dye molecules: a conformational approach to reduce aggregation’, Dyes Pigm., 2012, 92, (3), pp. 11321137.
    25. 25)
      • 4. Sommeling, P.M., Späth, M., Smit, H.J.P., et al: ‘Long-term stability testing of dye-sensitized solar cells’, J. Photochem. Photobiol. A, Chem., 2004, 164, (1–3), pp. 137144.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2019.0106
Loading

Related content

content/journals/10.1049/iet-opt.2019.0106
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading