Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Photonic integrated circuits for terahertz source generation

The authors introduce four kinds of terahertz photonics components based on photonic integrated circuits (PICs). A PIC-based integrated optoelectronic synthesiser for THz communications is described, which can be tuned continuously over the range 0.254–2.723 THz using photomixing. A laterally-coupled dual-grating distributed feedback laser (DFB) diode integrated with an electroabsorption modulator is used to generate an 820 GHz beat signal. THz signal production is reported using a dual-wavelength DFB diode laser with a two-section phase-shifted sampled Bragg grating. Finally, a THz source at 640 GHz, based on a sampled grating distributed Bragg reflector semiconductor mode-locked laser diode, is reported offering superior reproducibility, controllability, and a wider operation range than other reported mode-locked THz laser diodes. Each of these sources is a monolithic construction emitting light at 1.5 µm. The light can be amplified in an erbium-doped fibre amplifier, delivered over silica optical fibre and used to generate THz radiation via a photodiode antenna or photoconductive antenna in a remote location.

Inspec keywords: distributed feedback lasers; distributed Bragg reflector lasers; antennas; semiconductor optical amplifiers; photodiodes; terahertz wave generation; integrated optoelectronics; laser modes; Bragg gratings; semiconductor lasers; optical fibre amplifiers; silicon compounds; laser mode locking; laser tuning; optical fibres; electroabsorption; erbium; microwave photonics; electro-optical modulation

Other keywords: frequency 820.0 GHz; erbium-doped fibre amplifier; frequency 0.254 THz to 2.723 THz; photodiode antenna; photomixing; wavelength 1.5 mum; terahertz photonics components; frequency 640.0 GHz; THz source; dual-wavelength DFB diode laser; terahertz source generation; SiO2; sampled grating distributed Bragg reflector semiconductor mode-locked laser diode; photonic integrated circuits; two-section phase-shifted sampled Bragg grating; silica optical fibre; photoconductive antenna; THz communications; laterally-coupled dual-grating distributed feedback laser diode; beat signal; PIC-based integrated optoelectronic synthesiser; electroabsorption modulator; THz signal production

Subjects: Fibre lasers and amplifiers; Fibre lasers and amplifiers; Laser beam modulation, pulsing and switching; mode locking and tuning; Design of specific laser systems; Optical beam modulators; Electro-optical devices; Lasing action in semiconductors; Integrated optoelectronics; Semiconductor lasers; Other optical system components; Gratings, echelles; Photoelectric devices; Single antennas; Microwave photonics; Laser beam modulation, pulsing and switching; mode locking and tuning

References

    1. 1)
      • 25. Song, H.-J., Ajito, K., Muramoto, Y., et al: ‘Uni-travelling-carrier photodiode module generating 300 GHz power greater than 1 mW’, IEEE Microw. Wirel. Compon. Lett., 2012, 22, (7), pp. 363365.
    2. 2)
      • 23. Arahira, S., Matsui, Y., Ogawa, Y.: ‘Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes’, IEEE J. Quantum Electron., 1996, 32, (7), pp. 12111224.
    3. 3)
      • 13. Hou, L., Haji, M., Qiu, B., et al: ‘Mode-locked laser array monolithically integrated with MMI combiner, SOA, and EA modulator’, IEEE Photonics Technol. Lett., 2011, 23, (15), pp. 10641066.
    4. 4)
      • 9. Hou, L., Haji, M., Eddie, I., et al: ‘Laterally-coupled dual-grating distributed feedback lasers for generating mode-beat terahertz signals’. Conf. on Lasers and Electro-Optics, San Jose, CA, USA, 2015, (Optical Society of America, 2015).
    5. 5)
      • 21. Tang, S.: ‘InP-based semiconductor lasers with novel sampled Bragg gratings and applications’, PhD thesis, University of Glasgow, 2019.
    6. 6)
      • 5. Yang, S.-H., Watts, R., Li, X., et al: ‘Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer’, Opt. Express, 2015, 23, (24), pp. 3120631215.
    7. 7)
      • 2. Hangyo, M., Nagashima, T., Nashima, S.: ‘Spectroscopy by pulsed terahertz radiation’, Meas. Sci. Technol., 2002, 13, (11), p. 1727.
    8. 8)
      • 17. Mori, T., Kawaguchi, H.: ‘Characteristics of nondegenerate four-wave mixing in electroabsorption modulator’, Appl. Phys. Lett., 2004, 85, (6), pp. 869871.
    9. 9)
      • 4. Tani, M., Gu, P., Hyodo, M., et al: ‘Generation of coherent terahertz radiation by photomixing of dual-mode lasers’, Opt. Quantum Electron., 2000, 32, (4), pp. 503520.
    10. 10)
      • 15. Report ITU-R SM.2352-0: ‘Technology trends of active services in the frequency range 275-3 000 GHz’ (International Telecommunication Union, Geneva, 2015).
    11. 11)
      • 7. Osborne, S., O'Brien, S., Buckley, K., et al: ‘Two-colour Fabry–Perot laser with terahertz primary mode spacing’, Electron. Lett., 2007, 43, (4), pp. 224225.
    12. 12)
      • 18. Yang, Z., Mutter, L., Stillhart, M., et al: ‘Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation’, Adv. Funct. Mater., 2007, 17, (13), pp. 20182023.
    13. 13)
      • 6. Hou, L., Haji, M., Eddie, I., et al: ‘Laterally coupled dual-grating distributed feedback lasers for generating mode-beat terahertz signals’, Opt. Lett., 2015, 40, (2), pp. 182185.
    14. 14)
      • 10. Tang, S., Hou, B., Liang, S., et al: ‘Terahertz signal generation based on a dual-mode 1.5 µm DFB semiconductor laser’. Conf. on Lasers and Electro-Optics/Pacific Rim, Hong Kong, 2018, (Optical Society of America, 2018).
    15. 15)
      • 22. Shimizu, T., Ogura, I., Yokoyama, H.: ‘860 GHz rate asymmetric colliding pulse modelocked diode lasers’, Electron. Lett., 1997, 33, (22), pp. 18681869.
    16. 16)
      • 1. Zhang, X.: ‘Terahertz wave imaging: horizons and hurdles’, Phys. Med. Biol., 2002, 47, (21), p. 3667.
    17. 17)
      • 8. Xu, J., Hou, L., Deng, Q., et al: ‘Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range’, Sci. Rep., 2016, 6, p. 29084.
    18. 18)
      • 16. Klehr, A., Fricke, J., Knauer, A., et al: ‘High-power monolithic two-mode DFB laser diodes for the generation of THz radiation’, IEEE J. Sel. Top. Quantum Electron., 2008, 14, (2), pp. 289294.
    19. 19)
      • 11. Hou, L., Haji, M., Marsh, J.H.: ‘Mode locking at terahertz frequencies using a distributed Bragg reflector laser with a sampled grating’, Opt. Lett., 2013, 38, (7), pp. 11131115.
    20. 20)
      • 3. Hu, B., Nuss, M.: ‘Imaging with terahertz waves’, Opt. Lett., 1995, 20, (16), pp. 17161718.
    21. 21)
      • 20. Gupta, A., Rana, G., Bhattacharya, A., et al: ‘Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation’, APL Photonics, 2018, 3, (5), p. 051706.
    22. 22)
      • 12. Hou, L., Hou, B., Liang, S., et al: ‘Generation of THz radiation by sampled grating DFB mode locked laser diodes’. Conf. on Lasers and Electro-Optics/Pacific Rim, Hong Kong, 2018, (Optical Society of America, 2018).
    23. 23)
      • 19. Shi, Y., Li, S., Chen, X., et al: ‘High channel count and high precision channel spacing multi-wavelength laser array for future PICs’, Sci. Rep., 2014, 4, p.7377.
    24. 24)
      • 14. Hou, L., Stolarz, P., Javaloyes, J., et al: ‘Subpicosecond pulse generation at quasi-40-GHz using a passively mode-locked AlGaInAs–InP 1.55 μm strained quantum-well laser’, IEEE Photonics Technol. Lett., 2009, 21, (23), pp. 17311733.
    25. 25)
      • 24. Yanson, D.A., Street, M.W., McDougall, S.D., et al: ‘Ultrafast harmonic mode-locking of monolithic compound-cavity laser diodes incorporating photonic-bandgap reflectors’, IEEE J. Quantum Electron., 2002, 38, (1), pp. 111.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2019.0089
Loading

Related content

content/journals/10.1049/iet-opt.2019.0089
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address