access icon free Energy-efficient bi-directional visible light communication using thin-film corner cube retroreflector for self-sustainable IoT

This study presents the design and analysis of energy-efficient visible light communication-based downlink and uplink using a thin-film corner cube retroreflector (TCCR). The uplink establishment from the user device (UD) to base station (BS) is achieved with the retroreflection of the downlink light beams using TCCR in UD. It eliminates the requirement of active optical source in the UD that reduces the power consumption for communication from the battery-constrained devices. Additionally, the photoelectric effect-based energy harvesting from lighting sources is also incorporated in the UD. By utilising the thin-film deposition of photosensitive alkali metals Na, K, Rb, and Cs, light energy has been harvested, and the harvested energy is utilised in the UD for the uplink modulation process. It makes the real self-sustainable communication towards the battery-less execution of internet of things (IoT). The proposed system offers the downlink and uplink for the distance of 2.15 m with the data rates of 10 Gbps and 1 kbps, respectively. The maximum harvested energy from the 18 W optical source by using the 100 nm Cs-TCCR is 104.40 µJ, and it can serve the energy consumption of the uplink modulator to transmit the UD data to the BS.

Inspec keywords: energy conservation; Internet of Things; optical communication equipment; retroreflectors; telecommunication power management; free-space optical communication; photoelectricity; energy harvesting

Other keywords: thin-film deposition; battery-constrained devices; Internet of Things; photosensitive alkali metals; energy 104.4 muJ; downlink light beam retroreflection; light energy harvesting; photoelectric effect-based energy harvesting; TCCR; thin-film corner cube retroreflector; energy-efficient bidirectional visible light communication; power 18.0 W; self-sustainable IoT

Subjects: Telecommunication systems (energy utilisation); Free-space optical links; Energy harvesting; Energy harvesting; Optical communication equipment

References

    1. 1)
      • 22. ‘Retroreflectors/Broadband Hollow Retroreflectors – Newport Corporation’. Available at https://www.newport.com/c/retro reflectors, accessed 10 June 2019.
    2. 2)
      • 1. Tsonev, D., Hyunchae, C., Sujan, R., et al: ‘A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride LED’, IEEE Photon. Technol. Lett., 2014, 26, (7), pp. 637640.
    3. 3)
      • 11. Noonpakdee, W.: ‘Performance analysis of passive–active optical wireless transmission for personal health monitoring’. Proc. IEEE Int. Conf. Ubiquitous and Future Networks, Shanghai, China, July 2014, pp. 1721.
    4. 4)
      • 30. Chan, T.K., Ford, J.E.: ‘Retroreflecting optical modulator using a MEMS deformable micromirror array’, IEEE/OSA J. Lightwave Technol., 2006, 24, (1), pp. 516525.
    5. 5)
      • 28. Pan, G., Ye, J., Ding, Z.: ‘Secure hybrid VLC-RF systems with light energy harvesting’, IEEE Trans. Commun., 2017, 65, (10), pp. 43484359.
    6. 6)
      • 27. Arnon, S., Barry, J. R., Karagiannidis, G. K., et al: ‘Advanced optical wireless communication systems’ (Cambridge University Press, USA, 2012).
    7. 7)
      • 29. Miller, D.A.B., Mall, V.P.: ‘Energy consumption in optical modulators for interconnects’, Opt. Expr., 2012, 20, (S2), pp. A293A308.
    8. 8)
      • 19. Noonpakdee, W.: ‘Indoor optical wireless communications employing corner cube retroreflector for health monitoring system’. IEEE Int. Conf. on Ubiquitous Future Networks, ICUFN, Da Nang, Vietnam, 2013, pp. 674678.
    9. 9)
      • 14. Ives, H.E., Briggs, H.B.: ‘Correlation of optical properties and photoelectric emission in thin films of alkali metals', J. Opt. Soc. Am., 1938, 28, (9), pp. 330338.
    10. 10)
      • 16. Tal, H., Manoj, M., Alexander, O.G., et al: ‘Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements’, Nat. Commun., 2018, 9, (1), pp. 16.
    11. 11)
      • 8. Ma, H., Lampe, L., Hranilovic, S.: ‘Integration of indoor visible light and power line communication systems’. Proc. IEEE Int. Symp. on Power Line Communications and its Applications, Johannesburg, South Africa, March 2013, pp. 291296.
    12. 12)
      • 13. Trodahl, H.J.: ‘Optical absorption in thin films’, J. Phys. E, Sci. Instrum., 1984, 17, (1), pp. 2729.
    13. 13)
      • 10. Janik, L., Novak, M., Dobesch, A., et al: ‘Retroreflective optical communication’. Proc. IEEE Conf. on Microwave Techniques, Brno, Czech Republic, April 2017, pp. 14.
    14. 14)
      • 23. Linford, L.B.: ‘Recent developments in the study of the external photoelectric effect’, Rev. Mod. Phys., 1933, 5, pp. 3461.
    15. 15)
      • 18. Parker, M.: ‘Optical properties of metals’, Solid State Phys., 1958, 6, pp. 313352.
    16. 16)
      • 6. Wang, Y., Wang, Y., Chi, N., et al: ‘Demonstration of 575-Mb/s downlink and 225 Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED’, Opt. Express, 2013, 21, (1), pp. 16.
    17. 17)
      • 25. Jenila, C., Jeyachitra, R.K.: ‘Illumination, communication and energy efficiency analysis of indoor visible light communication systems under the influence of optical source emission characteristics’, Photonic Netw. Commun., 2019, 38, pp. 129141.
    18. 18)
      • 3. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: ‘Optical wireless communications system and channel modelling with MATLAB’ (CRC Press, USA, 2013).
    19. 19)
      • 12. Shao, S., Khreishah, A., Elgala, H.: ‘Pixelated VLC-backscattering for self-charging indoor IoT devices’, IEEE Photon. Technol. Lett., 2017, 29, (2), pp. 177180.
    20. 20)
      • 2. Feng, L., Hu, R.Q., Wang, J., et al: ‘Applying VLC in 5G networks: architectures and key technologies’, IEEE Netw.., 2016, 30, (6), pp. 7783.
    21. 21)
      • 21. ISO 8995 CIE S 008/E: ‘Lighting of Indoor Work Places’, 2002.
    22. 22)
      • 24. ‘Electron Work Function of the Elements’. Available at https://public.wsu.edu/~pchemlab/documents/Work-functionvalues.pdf, accessed 10 June 2019.
    23. 23)
      • 20. Gancarz, J., Elgala, H., Little, T.D.C.: ‘Impact of lighting requirements on VLC systems’, IEEE Commun. Mag., 2013, 51, (12), pp. 3441.
    24. 24)
      • 15. Willey, R.R.: ‘Practical design and production of optical thin films’ (CRC Press, USA, 2002).
    25. 25)
      • 17. Rinne, J., Keskinen, J., Berger, P.R., et al: ‘Wireless energy harvesting and communications: limits and reliability’. Proc. IEEE Wireless Communication Networks Conf. Workshop, San Francisco, CA, 2017, pp. 16.
    26. 26)
      • 7. Cossu, G., Corsini, R., Ciaramella, E., ‘High-speed bi-directional optical wireless system in non-directed line-of-sight configuration’, J. Lightwave Technol., 2014, 32, (10), pp. 20352040.
    27. 27)
      • 9. Sihua, S., Abdallah, K., Moussa, A., et al: ‘Design and analysis of a visible-light-communication enhanced WiFi system’, J. Opt. Commun. Netw., 2015, 7, (10), pp. 960973.
    28. 28)
      • 5. Liu, Y.F., Yeh, C.H., Chow, C.W., et al: ‘Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference’, Opt. Express, 2012, 20, (21), pp. 2301923024.
    29. 29)
      • 4. ITU-R: ‘Visible Light for Broadband Communications ITU-R SM.2422-0’ (International Telecommunication Union, 2018), pp. 1–18.
    30. 30)
      • 26. Moreira, A.J.C., Valadas, R.T., De Oliveira Duarte, A.M.: ‘Optical interference produced by artificial light’, Wirel. Netw., 1997, 3, (2), pp. 131140.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2019.0086
Loading

Related content

content/journals/10.1049/iet-opt.2019.0086
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading