Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Integration of periodic, sub-wavelength structures in silicon-on-insulator photonic device design

Rapid advances in high-resolution chip lithography have accelerated nanophotonic device development on the silicon-on-insulator (SOI) platform. The ability to create sub-wavelength features in silicon has attracted research in photonic band and dispersion engineering and consequently made available a wide array of device functionalities. By drawing on recent demonstrations, the authors review how periodic, sub-wavelength structures are used for passive wave manipulation in SOI device design. The optical response is evaluated for both orthogonal polarisations at the telecom wavelengths of 1310 and 1550 nm. The results offer a versatile toolkit for the integration of these features in conventional nanophotonic device geometries. Notable benefits include a fine control of dispersion, wavelength and polarisation selectivity, and broadband performance.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 77. Soldano, L.B., Pennings, E.C.: ‘Optical multi-mode interference devices based on self-imaging: principles and applications’, J. Lightwave Technol., 1995, 13, (4), pp. 615627.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 3. Thomson, D., Zilkie, A., Bowers, J. E., et al: ‘Roadmap on silicon photonics’, J. Opt., 2016, 18, (7), pp. 34.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 4. Soref, R., Larenzo, J.: ‘All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm’, IEEE J. Quantum Electron., 1986, 22, (6), pp. 873879.
    20. 20)
    21. 21)
      • 85. Xu, Y., Xiao, J.: ‘Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler’, Sci. Rep., 2016, 6, p. 27949.
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 12. Chrostowski, L., Hochberg, M.: ‘Silicon photonics design: from devices to systems’ (Cambridge University Press, UK, 2015).
    26. 26)
      • 80. Zanzi, A., Brimont, A., Griol, A., et al: ‘Compact and low-loss asymmetrical multimode interference splitter for power monitoring applications’, Opt. Lett., 2016, 41, (2), pp. 227229.
    27. 27)
      • 49. Schelew, E., Rieger, G.W., Young, J.F.: ‘Characterization of integrated planar photonic crystal circuits fabricated by a CMOS foundry’, J. Lightwave Technol., 2013, 31, (2), pp. 239248. Available at http://jlt.osa.org/abstract.cfm?URI=jlt-31-2-239.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 52. Li, Y., Kita, S., Muñoz, P., et al: ‘On-chip zero-index metamaterials’, Nat. Photonics, 2015, 9, (11), p. 738.
    39. 39)
      • 19. Papes, M., Cheben, P., Benedikovic, D., et al: ‘Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides’, Opt. Exp., 2016, 24, (5), pp. 50265038.
    40. 40)
    41. 41)
      • 97. D'Mello, Y., Bernal, S., Skoric, J., et al: ‘Photonic crystal behavior of nitzschia filiformis phytoplankton for chlorophyll a photosynthesis’. Conf. on Lasers and Electro-Optics (CLEO), San Jose, 2019.
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • 37. Halir, R., Bock, P.J., Cheben, P., et al: ‘Waveguide sub-wavelength structures: a review of principles and applications’, Laser Photonics Rev., 2015, 9, (1), pp. 2549.
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
      • 22. Xu, L., Wang, Y., Kumar, A., et al: ‘Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI’, IEEE Photon. Technol. Lett., 2018, 30, (4), pp. 403406.
    52. 52)
      • 104. Shen, B., Wang, P., Polson, R., et al: ‘An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm 2 footprint’, Nat. Photonics, 2015, 9, (6), p. 378.
    53. 53)
    54. 54)
      • 94. Kuczynska, P., Jemiola-Rzeminska, M., Strzalka, K.: ‘Photosynthetic pigments in diatoms’, Mar. Drugs, 2015, 13, (9), pp. 58475881.
    55. 55)
      • 13. Ruan, Z., Shen, L., Zheng, S., et al: ‘Subwavelength grating slot (SWGS) waveguide on silicon platform’, Opt. Express, 2017, 25, (15), pp. 1825018264.
    56. 56)
    57. 57)
      • 83. Xu, L., Wang, Y., El-Fiky, E., et al: ‘Compact broadband polarization beam splitter based on multimode interference coupler with internal photonic crystal for the SOI platform’, J. Lightwave Technol., 2019, 37, (4), pp. 12311240.
    58. 58)
      • 79. Bermello, A.H., Gonzalez, J.M.L., Velasco, A., et al: ‘Design of a broadband polarization splitter based on anisotropy-engineered tilted subwavelength gratings’, IEEE Photonics J., 2019, 11, (3), pp. 18.
    59. 59)
      • 30. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., et al: ‘Photonic crystals: molding the flow of light’ (Princeton University Press, UK, 2008, 2nd edn.).
    60. 60)
    61. 61)
      • 21. Wang, Y., Lu, Z., Ma, M., et al: ‘Compact broadband directional couplers using subwavelength gratings’, IEEE Photonics J., 2016, 8, (3), pp. 18.
    62. 62)
    63. 63)
      • 98. Taniguchi, M., Lindsey, J.S.: ‘Database of absorption and fluorescence spectra of> 300 common compounds for use in photochem CAD’, Photochem. Photobiol., 2018, 94, (2), pp. 290327.
    64. 64)
      • 36. Palik, E.D.: ‘Handbook of optical constants of solids’ (Academic Press, USA, 1998).
    65. 65)
    66. 66)
    67. 67)
    68. 68)
      • 1. Brown, T.G.: ‘Optical fibers and fiber-optic communications’, in ‘Fiber optics handbook’ (The McGraw Hill, USA, 2002), pp. 1.11.49.
    69. 69)
    70. 70)
    71. 71)
      • 96. Fuhrmann, T., Landwehr, S., El Rharbi-Kucki, M., et al: ‘Diatoms as living photonic crystals’, Appl. Phys. B, 2004, 78, (3–4), pp. 257260.
    72. 72)
    73. 73)
    74. 74)
    75. 75)
    76. 76)
    77. 77)
      • 47. Barwicz, T., Watts, M.R., Popović, M.A., et al: ‘Polarization-transparent microphotonic devices in the strong confinement limit’, Nat. Photonics, 2007, 1, (1), p. 57.
    78. 78)
      • 92. Jalali, B.: ‘Making silicon lase’, Sci. Am., 2007, 296, (2), pp. 5865. Available at http://www.jstor.org/stable/26069154.
    79. 79)
      • 100. Dbouk, T.: ‘A review about the engineering design of optimal heat transfer systems using topology optimization’, Appl. Therm. Eng., 2017, 112, pp. 841854, doi: https://doi.org/10.1016/j.applthermaleng.2016.10.134.
    80. 80)
    81. 81)
      • 102. Lu, J., Vučković, J.: ‘Nanophotonic computational design’, Opt. Exp., 2013, 21, (11), pp. 1335113367.
    82. 82)
      • 39. Rytov, S.M.: ‘Electromagnetic properties fo a finely stratified medium’, JETP, 1956, 2, (3), pp. 466475.
    83. 83)
      • 2. Yariv, A., Yeh, P.: ‘Photonics: optical electronics in modern communications (the Oxford series in electrical and computer engineering)’ (Oxford University Press, Inc., USA, 2006).
    84. 84)
      • 6. Pauliac, S., Landis, S., Foucher, J., et al: ‘Hybrid lithography process for nano-scale devices’, 2006, pp. 17611766.
    85. 85)
      • 50. Ohtera, Y., Onuki, T., Inoue, Y., et al: ‘Multichannel photonic crystal wavelength filter array for near-infrared wavelengths’, J. Lightwave Technol., 2007, 25, (2), pp. 499503. Available at http://jlt.osa.org/abstract.cfm?URI=jlt-25-2-499.
    86. 86)
    87. 87)
    88. 88)
    89. 89)
      • 82. Shi, Y., Dai, D., He, S.: ‘Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler’, IEEE Photonics Technol. Lett., 2007, 19, (11), pp. 825827.
    90. 90)
    91. 91)
      • 16. Wang, Y., Xu, L., Kumar, A., et al: ‘Compact single-etched sub-wavelength grating couplers for O-band application’, Opt. Express, 2017, 25, (24), pp. 3058230590.
    92. 92)
      • 55. Reshef, O., Camayd-Muñoz, P., Vulis, D.I., et al: ‘Direct observation of phase-free propagation in a silicon waveguide’, ACS Photonics, 2017, 4, (10), pp. 23852389.
    93. 93)
      • 38. Berthier, S., Lafait, J.: ‘Effective medium theory: mathematical determination of the physical solution for the dielectric constant’, Opt. Commun., 1980, 33, (3), pp. 303306, doi: https://doi.org/10.1016/0030-4018(80)90249-7.
    94. 94)
    95. 95)
    96. 96)
    97. 97)
    98. 98)
    99. 99)
      • 43. Zhao, Q., Zhou, J., Zhang, F., et al: ‘Mie resonance-based dielectric metamaterials’, Mater. Today, 2009, 12, (12), pp. 6069, doi: https://doi.org/10.1016/S1369-7021(09)70318-9.
    100. 100)
    101. 101)
      • 7. ‘NanoSOI Design Rules’. Applied Nanotools Inc. Available at: https://www.appliednt.com/nanosoi/sys/resources/rules/, accessed 26 March 2019.
    102. 102)
      • 95. D'Mello, Y., Petrescu, D., Skoric, J., et al: ‘Characterization of the photonic response in nitzschia filiformis phytoplankton’. Conf. on Lasers and Electro-Optics (CLEO), San Jose, 2018, pp. 12.
    103. 103)
    104. 104)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2019.0077
Loading

Related content

content/journals/10.1049/iet-opt.2019.0077
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address