Integration of periodic, sub-wavelength structures in silicon-on-insulator photonic device design
- Author(s): Yannick D'Mello 1 ; Orad Reshef 2 ; Santiago Bernal 1 ; Eslam El-fiky 1, 3 ; Yun Wang 1 ; Maxime Jacques 1 ; David V. Plant 1
-
-
View affiliations
-
Affiliations:
1:
Department of Electrical and Computer Engineering, McGill University , H3E 0E9, Montreal , Canada ;
2: Department of Physics, University of Ottawa , K1N 6N5, Ottawa , Canada ;
3: Department of Electrical Engineering, Alexandria University , 21544, Alexandria , Egypt
-
Affiliations:
1:
Department of Electrical and Computer Engineering, McGill University , H3E 0E9, Montreal , Canada ;
- Source:
Volume 14, Issue 3,
June
2020,
p.
125 – 135
DOI: 10.1049/iet-opt.2019.0077 , Print ISSN 1751-8768, Online ISSN 1751-8776
Rapid advances in high-resolution chip lithography have accelerated nanophotonic device development on the silicon-on-insulator (SOI) platform. The ability to create sub-wavelength features in silicon has attracted research in photonic band and dispersion engineering and consequently made available a wide array of device functionalities. By drawing on recent demonstrations, the authors review how periodic, sub-wavelength structures are used for passive wave manipulation in SOI device design. The optical response is evaluated for both orthogonal polarisations at the telecom wavelengths of 1310 and 1550 nm. The results offer a versatile toolkit for the integration of these features in conventional nanophotonic device geometries. Notable benefits include a fine control of dispersion, wavelength and polarisation selectivity, and broadband performance.
Inspec keywords: silicon; integrated optics; optical dispersion; elemental semiconductors; optical design techniques; light polarisation; reviews; silicon-on-insulator; nanophotonics
Other keywords: telecom wavelengths; review; orthogonal polarisations; silicon-on-insulator platform; nanophotonic device development; dispersion engineering; optical response; conventional nanophotonic device geometry; high-resolution chip lithography; passive wave manipulation; silicon-on-insulator photonic device design; wide array; polarisation selectivity; periodic subwavelength structures; Si; SOI device design; subwavelength features; wavelength 1550.0 nm; photonic band; broadband performance; wavelength 1310.0 nm; device functionalities
Subjects: Integrated optics; Integrated optics; Nanophotonic devices and technology; Optical system design; Nanophotonic devices and technology; Reviews and tutorial papers; resource letters
References
-
-
1)
-
46. Xu, D., Schmid, J.H., Reed, G.T., et al: ‘Silicon photonic integration platform – have we found the sweet spot?’, IEEE J. Sel. Top. Quantum Electron., 2014, 20, (4), pp. 189–205, doi: 10.1109/JSTQE.2014.2299634.
-
-
2)
-
58. Wang, C., Yao, J.: ‘Fiber Bragg gratings for microwave photonics subsystems’, Opt. Express, 2013, 21, (19), pp. 22868–22884, doi: 10.1364/OE.21.022868.
-
-
3)
-
68. Quan, Q., Deotare, P.B., Loncar, M.: ‘Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide’, Appl. Phys. Lett., 2010, 96, (20), p. 203102, doi: 10.1063/1.3429125.
-
-
4)
-
60. Shi, W., Wang, X., Lin, C., et al: ‘Electrically tunable resonant filters in phase-shifted contra-directional couplers’. The 9th Int. Conf. on Group IV Photonics (GFP), San Diego, CA, USA, 29–31 August 2012, pp. 78–80, doi: 10.1109/GROUP4.2012.6324092.
-
-
5)
-
59. Qiu, H., Jiang, J., Yu, P., et al: ‘Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide’, Opt. Lett., 2016, 41, (11), pp. 2450–2453, doi: 10.1364/OL.41.002450.
-
-
6)
-
17. Halir, R., Cheben, P., Janz, S., et al: ‘Waveguide grating coupler with subwavelength microstructures’, Opt. Lett., 2009, 34, (9), pp. 1408–1410, doi: 10.1364/OL.34.001408.
-
-
7)
-
41. Yamaguti, S., Inoue, J.-I., Haeberlé, O., et al: ‘Photonic crystals versus diffraction gratings in smith-purcell radiation’, Phys. Rev. B, 2002, 66, (19), p. 195202, doi: 10.1103/PhysRevB.66.195202.
-
-
8)
-
75. Sánchez-Postigo, A., Wangüemert-Pérez, J.G., Penadés, J., et al: ‘Mid-infrared suspended waveguide platform and building blocks’, IET Optoelectron., 2019, 13, (2), pp. 55–61, doi: 10.1049/iet-opt.2018.5067.
-
-
9)
-
77. Soldano, L.B., Pennings, E.C.: ‘Optical multi-mode interference devices based on self-imaging: principles and applications’, J. Lightwave Technol., 1995, 13, (4), pp. 615–627.
-
-
10)
-
23. Abadía, N., Saber, M.G., Bello, F., et al: ‘CMOS-compatible multi-band plasmonic TE-pass polarizer’, Opt. Express, 2018, 26, (23), pp. 30292–30304, doi: 10.1364/OE.26.030292.
-
-
11)
-
15. Bock, P.J., Cheben, P., Schmid, J.H., et al: ‘Subwavelength grating periodic structures in silicon-on-insulator: a new type of microphotonic waveguide’, Opt. Express, 2010, 18, (19), pp. 20251–20262, doi: 10.1364/OE.18.020251.
-
-
12)
-
90. Upham, J., Gao, B., O'Faolain, L., et al: ‘Realization of a flat-band superprism on-chip from parallelogram lattice photonic crystals’, Opt. Lett., 2018, 43, (20), pp. 4981–4984, doi: 10.1364/OL.43.004981.
-
-
13)
-
3. Thomson, D., Zilkie, A., Bowers, J. E., et al: ‘Roadmap on silicon photonics’, J. Opt., 2016, 18, (7), pp. 3–4.
-
-
14)
-
61. Qiu, H., Su, Y., Yu, P., et al: ‘Compact polarization splitter based on silicon grating-assisted couplers’, Opt. Lett., 2015, 40, (9), pp. 1885–1887, doi: 10.1364/OL.40.001885.
-
-
15)
-
7. Wang, X., Shi, W., Yun, H., Grist, S., Jaeger, N.A.F., Chrostowski, L.: ‘Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process’, Opt. Express, 2012, 20, (14), pp. 15547–15558 (doi: 10.1364/OE.20.015547).
-
-
16)
-
2. Almeida, V.R., Xu, Q., Barrios, C.A.: ‘Guiding and confining light in void nanostructure’, Opt. Lett., 2004, 29, (11), pp. 1209–1211 (doi: 10.1364/OL.29.001209).
-
-
17)
-
26. Krauss, T.F., De La Rue, R.M., Brand, S.: ‘Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths’, Nature, 1996, 383, pp. 699–702 (doi: 10.1038/383699a0).
-
-
18)
-
99. Liu, C., Rybin, M., Mao, P., et al: ‘Disorder-immune photonics based on mie-resonant dielectric metamaterials’. Conf. on Lasers and Electro-Optics, San Jose, California, 2019/05/05. Optical Society of America, in OSA Technical Digest, p. FF3B.6, doi: 10.1364/CLEO_QELS.2019.FF3B.6. Available at http://www.osapublishing.org/abstract.cfm?URI=CLEO_QELS-2019-FF3B.6.
-
-
19)
-
4. Soref, R., Larenzo, J.: ‘All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm’, IEEE J. Quantum Electron., 1986, 22, (6), pp. 873–879.
-
-
20)
-
2. Yablonovitch, E.: ‘Inhibited spontaneous emission in solid-state physics and electronics’, Phys. Rev. Lett., 1987, 58, (20), pp. 2059–2062 (doi: 10.1103/PhysRevLett.58.2059).
-
-
21)
-
85. Xu, Y., Xiao, J.: ‘Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler’, Sci. Rep., 2016, 6, p. 27949.
-
-
22)
-
70. Lin, S.-Y., Chow, E., Hietala, V., et al: ‘Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal’, Science, 1998, 282, (5387), pp. 274–276, doi: 10.1126/science.282.5387.274.
-
-
23)
-
62. Deotare, P.B., McCutcheon, M.W., Frank, I.W., et al: ‘High quality factor photonic crystal nanobeam cavities’, Appl. Phys. Lett., 2009, 94, (12), p. 121106, doi: 10.1063/1.3107263.
-
-
24)
-
53. Huang, X., Lai, Y., Hang, Z.H., et al: ‘Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials’, Nature Mater., 2011, 10, p. 582, doi: 10.1038/nmat3030. Available at https://www.nature.com/articles/nmat3030#supplementary-information.
-
-
25)
-
12. Chrostowski, L., Hochberg, M.: ‘Silicon photonics design: from devices to systems’ (Cambridge University Press, UK, 2015).
-
-
26)
-
80. Zanzi, A., Brimont, A., Griol, A., et al: ‘Compact and low-loss asymmetrical multimode interference splitter for power monitoring applications’, Opt. Lett., 2016, 41, (2), pp. 227–229.
-
-
27)
-
49. Schelew, E., Rieger, G.W., Young, J.F.: ‘Characterization of integrated planar photonic crystal circuits fabricated by a CMOS foundry’, J. Lightwave Technol., 2013, 31, (2), pp. 239–248. Available at http://jlt.osa.org/abstract.cfm?URI=jlt-31-2-239.
-
-
28)
-
84. Wang, Y., Ma, M., Yun, H., et al: ‘Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform’, IEEE Photonics J., 2016, 8, (6), pp. 1–9, doi: 10.1109/JPHOT.2016.2630849.
-
-
29)
-
66. Qi, B., Yu, P., Li, Y., et al: ‘Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity’, IEEE Photonics Technol. Lett., 2011, 23, (14), pp. 992–994, doi: 10.1109/LPT.2011.2148704.
-
-
30)
-
8. Chrostowski, L., Shoman, H., Hammood, M., et al: ‘Silicon photonic circuit design using rapid prototyping foundry process design kits’, IEEE J. Sel. Top. Quantum Electron., 2019, 25, (5), pp. 1–1, doi: 10.1109/JSTQE.2019.2917501.
-
-
31)
-
18. Chen, X., Tsang, H.K.: ‘Nanoholes grating couplers for coupling between silicon-on-insulator waveguides and optical fibers’, IEEE Photonics J., 2009, 1, (3), pp. 184–190, doi: 10.1109/JPHOT.2009.2031685.
-
-
32)
-
72. Zadka, M., Dave, U.D., Lipson, M.: ‘High tolerance of metamaterial waveguides to fabrication variations’. Conf. on Lasers and Electro-Optics, San Jose, California, 2019/05/05. Optical Society of America, in OSA Technical Digest, p. SF1J.7, doi: 10.1364/CLEO_SI.2019.SF1J.7. Available at http://www.osapublishing.org/abstract.cfm?URI=CLEO_SI-2019-SF1J.7.
-
-
33)
-
31. Regan, E.C., Igarashi, Y., Zhen, B., et al: ‘Direct imaging of iso frequency contours in photonic structures’, Sci. Adv., 2016, 2, (11), p. e1601591, doi: 10.1126/sciadv.1601591.
-
-
34)
-
88. Soljačić, M., Johnson, S.G., Fan, S., et al: ‘Photonic-crystal slow-light enhancement of nonlinear phase sensitivity’, J. Opt. Soc. Am. B, 2002, 19, (9), pp. 2052–2059, doi: 10.1364/JOSAB.19.002052.
-
-
35)
-
10. Chen, H., Luo, X., Poon, A.W.: ‘Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p-i-n diode embedded silicon microring resonator’, Appl. Phys. Lett., 2009, 95, (17), p. 171111, doi: 10.1063/1.3257384.
-
-
36)
-
24. John, S.: ‘Strong localization of photons in certain disordered dielectric superlattices (PDF)’, Phys. Rev. Lett., 1987, 58, pp. 2486–2489 (doi: 10.1103/PhysRevLett.58.2486).
-
-
37)
-
27. Zhou, W., Cheng, Z., Chen, X., et al: ‘Subwavelength engineering in silicon photonic devices’, IEEE J. Sel. Top. Quantum Electron., 2019, 25, (3), pp. 1–13, doi: 10.1109/JSTQE.2019.2899757.
-
-
38)
-
52. Li, Y., Kita, S., Muñoz, P., et al: ‘On-chip zero-index metamaterials’, Nat. Photonics, 2015, 9, (11), p. 738.
-
-
39)
-
19. Papes, M., Cheben, P., Benedikovic, D., et al: ‘Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides’, Opt. Exp., 2016, 24, (5), pp. 5026–5038.
-
-
40)
-
93. Tréguer, P., Bowler, C., Moriceau, B., et al: ‘Influence of diatom diversity on the ocean biological carbon pump’, Nat. Geosci., 2018, 11, (1), pp. 27–37, doi: 10.1038/s41561-017-0028-x.
-
-
41)
-
97. D'Mello, Y., Bernal, S., Skoric, J., et al: ‘Photonic crystal behavior of nitzschia filiformis phytoplankton for chlorophyll a photosynthesis’. Conf. on Lasers and Electro-Optics (CLEO), San Jose, 2019.
-
-
42)
-
11. Bauters, J.F., Heck, M.J., John, D. D., et al: ‘Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding’, Opt. Express, 2011, 19, (24), pp. 24090–24101, doi: 10.1364/OE.19.024090.
-
-
43)
-
26. Vulis, D.I., Reshef, O., Camayd-Muñoz, P., et al: ‘Manipulating the flow of light using Dirac-cone zero-index metamaterials’, Rep. Prog. Phys., 2018, 82, (1), p. 012001, doi: 10.1088/1361-6633/aad3e5.
-
-
44)
-
54. Vulis, D.I., Li, Y., Reshef, O., et al: ‘Monolithic CMOS-compatible zero-index metamaterials’, Opt. Express, 2017, 25, (11), pp. 12381–12399, doi: 10.1364/OE.25.012381.
-
-
45)
-
65. Li, Y., Cui, K., Feng, X., et al: ‘Optomechanical crystal nanobeam cavity with high optomechanical coupling rate’, J. Opt., 2015, 17, (4), p. 045001, doi: 10.1088/2040-8978/17/4/045001.
-
-
46)
-
37. Halir, R., Bock, P.J., Cheben, P., et al: ‘Waveguide sub-wavelength structures: a review of principles and applications’, Laser Photonics Rev., 2015, 9, (1), pp. 25–49.
-
-
47)
-
91. Moon, J., et al: ‘Continuous wave green lasing at room temperature in two-dimensional photonic crystal perovskite laser’. Conf. on Lasers and Electro-Optics, San Jose, California, 2019/05/05. Optical Society of America, in OSA Technical Digest, p. SW4N.2, doi: 10.1364/CLEO_SI.2019.SW4N.2. Available at http://www.osapublishing.org/abstract.cfm?URI=CLEO_SI-2019-SW4N.2.
-
-
48)
-
29. Luque-González, J.M., Herrero-Bermello, A., Ortega-Moñux, A., et al: ‘Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides’, Opt. Lett., 2018, 43, (19), pp. 4691–4694, doi: 10.1364/OL.43.004691.
-
-
49)
-
73. Ortega-Moñux, A., Čtyroký, J., Cheben, P., et al: ‘Disorder effects in subwavelength grating metamaterial waveguides’, Opt. Express, 2017, 25, (11), pp. 12222–12236, doi: 10.1364/OE.25.012222.
-
-
50)
-
101. Zhu, J.-H., Zhang, W.-H., Xia, L.: ‘Topology optimization in aircraft and aerospace structures design’, Arch. Comput. Methods Eng., 2016, 23, (4), pp. 595–622, doi: 10.1007/s11831-015-9151-2.
-
-
51)
-
22. Xu, L., Wang, Y., Kumar, A., et al: ‘Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI’, IEEE Photon. Technol. Lett., 2018, 30, (4), pp. 403–406.
-
-
52)
-
104. Shen, B., Wang, P., Polson, R., et al: ‘An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm 2 footprint’, Nat. Photonics, 2015, 9, (6), p. 378.
-
-
53)
-
87. McGarvey-Lechable, K., Bianucci, P.: ‘Bloch-floquet waves in optical ring resonators’. Conf. on Lasers and Electro-Optics, San Jose, California, 2019/05/05. Optical Society of America, in OSA Technical Digest, p. SW4J.2, doi: 10.1364/CLEO_SI.2019.SW4J.2. Available at http://www.osapublishing.org/abstract.cfm?URI=CLEO_SI-2019-SW4J.2.
-
-
54)
-
94. Kuczynska, P., Jemiola-Rzeminska, M., Strzalka, K.: ‘Photosynthetic pigments in diatoms’, Mar. Drugs, 2015, 13, (9), pp. 5847–5881.
-
-
55)
-
13. Ruan, Z., Shen, L., Zheng, S., et al: ‘Subwavelength grating slot (SWGS) waveguide on silicon platform’, Opt. Express, 2017, 25, (15), pp. 18250–18264.
-
-
56)
-
45. Camayd-Muñoz, P., Kita, S., Mello, O., et al: ‘Lossless integrated Dirac-cone metamaterials’. Conf. on Lasers and Electro-Optics, San Jose, California, 2016/06/05. Optical Society of America, in OSA Technical Digest, p. JW2A.24, doi: 10.1364/CLEO_AT.2016.JW2A.24. Available at http://www.osapublishing.org/abstract.cfm?URI=CLEO_AT-2016-JW2A.24.
-
-
57)
-
83. Xu, L., Wang, Y., El-Fiky, E., et al: ‘Compact broadband polarization beam splitter based on multimode interference coupler with internal photonic crystal for the SOI platform’, J. Lightwave Technol., 2019, 37, (4), pp. 1231–1240.
-
-
58)
-
79. Bermello, A.H., Gonzalez, J.M.L., Velasco, A., et al: ‘Design of a broadband polarization splitter based on anisotropy-engineered tilted subwavelength gratings’, IEEE Photonics J., 2019, 11, (3), pp. 1–8.
-
-
59)
-
30. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., et al: ‘Photonic crystals: molding the flow of light’ (Princeton University Press, UK, 2008, 2nd edn.).
-
-
60)
-
56. He, X.-T., Huang, Z.Z., Chang, M.L., et al: ‘Realization of zero-refractive-index lens with ultralow spherical aberration’, ACS Photonics, 2016, 3, (12), pp. 2262–2267, doi: 10.1021/acsphotonics.6b00714.
-
-
61)
-
21. Wang, Y., Lu, Z., Ma, M., et al: ‘Compact broadband directional couplers using subwavelength gratings’, IEEE Photonics J., 2016, 8, (3), pp. 1–8.
-
-
62)
-
32. Li, H.H.: ‘Refractive index of silicon and germanium and its wavelength and temperature derivatives’, J. Phys. Chem. Ref. Data, 1980, 9, (3), pp. 561–658, doi: 10.1063/1.555624.
-
-
63)
-
98. Taniguchi, M., Lindsey, J.S.: ‘Database of absorption and fluorescence spectra of> 300 common compounds for use in photochem CAD’, Photochem. Photobiol., 2018, 94, (2), pp. 290–327.
-
-
64)
-
36. Palik, E.D.: ‘Handbook of optical constants of solids’ (Academic Press, USA, 1998).
-
-
65)
-
25. Cheben, P., Halir, R., Schmid, J.H., et al: ‘Subwavelength integrated photonics’, Nature, 2018, 560, (7720), pp. 565–572, doi: 10.1038/s41586-018-0421-7.
-
-
66)
-
78. Halir, R., Cheben, P., Luque-González, J.M., et al: ‘Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial’, Laser Photonics Rev., 2016, 10, (6), pp. 1039–1046, doi: 10.1002/lpor.201600213.
-
-
67)
-
14. Cheben, P., Xu, D.-X., Janz, S., et al: ‘Subwavelength waveguide grating for mode conversion and light coupling in integrated optics’, Opt. Express, 2006, 14, (11), pp. 4695–4702 (doi: 10.1364/OE.14.004695).
-
-
68)
-
1. Brown, T.G.: ‘Optical fibers and fiber-optic communications’, in ‘Fiber optics handbook’ (The McGraw Hill, USA, 2002), pp. 1.1–1.49.
-
-
69)
-
24. El-Fiky, E., D'Mello, Y., Wang, Y., et al: ‘Ultra-broadband and compact asymmetrical beam splitter enabled by angled sub-wavelength grating MMI’. Conf. on Lasers and Electro-Optics, San Jose, California, 2018/05/13. Optical Society of America, in OSA Technical Digest, p. STh4A.7, doi: 10.1364/CLEO_SI.2018.STh4A.7. Available at http://www.osapublishing.org/abstract.cfm?URI=CLEO_SI-2018-STh4A.7.
-
-
70)
-
14. Reshef, O., Nacke, C., Upham, J., et al: ‘Waveguide-to-waveguide directional coupling beyond a free space wavelength’. Conf. on Lasers and Electro-Optics, San Jose, California, 2019/05/05. Optical Society of America, in OSA Technical Digest, p. SF1J.6, doi: 10.1364/CLEO_SI.2019.SF1J.6. Available at http://www.osapublishing.org/abstract.cfm?URI=CLEO_SI-2019-SF1J.6.
-
-
71)
-
96. Fuhrmann, T., Landwehr, S., El Rharbi-Kucki, M., et al: ‘Diatoms as living photonic crystals’, Appl. Phys. B, 2004, 78, (3–4), pp. 257–260.
-
-
72)
-
64. Huang, Z., Cui, K., Li, Y., et al: ‘Strong optomechanical coupling in nanobeam cavities based on hetero optomechanical crystals’, Sci. Rep., 2015, 5, p. 15964, doi: 10.1038/srep15964.
-
-
73)
-
42. Swartzlander, G.A.: ‘Radiation pressure on a diffractive sailcraft’, J. Opt. Soc. Am. B, 2017, 34, (6), pp. C25–C30, doi: 10.1364/JOSAB.34.000C25.
-
-
74)
-
76. Zhou, W., Cheng, Z., Wu, X., et al: ‘Fully suspended slot waveguide platform’, J. Appl. Phys., 2018, 123, (6), p. 063103, doi: 10.1063/1.5017780.
-
-
75)
-
35. Yeh, P., Yariv, A., Hong, C.-S.: ‘Electromagnetic propagation in periodic stratified media. I. General theory*’, J. Opt. Soc. Am., 1977, 67, (4), pp. 423–438, doi: 10.1364/JOSA.67.000423.
-
-
76)
-
71. Cheben, P., Schmid, J.H., Wang, S., et al: ‘Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency’, Opt. Express, 2015, 23, (17), pp. 22553–22563, doi: 10.1364/OE.23.022553.
-
-
77)
-
47. Barwicz, T., Watts, M.R., Popović, M.A., et al: ‘Polarization-transparent microphotonic devices in the strong confinement limit’, Nat. Photonics, 2007, 1, (1), p. 57.
-
-
78)
-
92. Jalali, B.: ‘Making silicon lase’, Sci. Am., 2007, 296, (2), pp. 58–65. Available at http://www.jstor.org/stable/26069154.
-
-
79)
-
100. Dbouk, T.: ‘A review about the engineering design of optimal heat transfer systems using topology optimization’, Appl. Therm. Eng., 2017, 112, pp. 841–854, doi: https://doi.org/10.1016/j.applthermaleng.2016.10.134.
-
-
80)
-
67. Hendrickson, J., Soref, R., Sweet, J., et al: ‘Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: design and simulation’, Opt. Express, 2014, 22, (3), pp. 3271–3283, doi: 10.1364/OE.22.003271.
-
-
81)
-
102. Lu, J., Vučković, J.: ‘Nanophotonic computational design’, Opt. Exp., 2013, 21, (11), pp. 13351–13367.
-
-
82)
-
39. Rytov, S.M.: ‘Electromagnetic properties fo a finely stratified medium’, JETP, 1956, 2, (3), pp. 466–475.
-
-
83)
-
2. Yariv, A., Yeh, P.: ‘Photonics: optical electronics in modern communications (the Oxford series in electrical and computer engineering)’ (Oxford University Press, Inc., USA, 2006).
-
-
84)
-
6. Pauliac, S., Landis, S., Foucher, J., et al: ‘Hybrid lithography process for nano-scale devices’, 2006, pp. 1761–1766.
-
-
85)
-
50. Ohtera, Y., Onuki, T., Inoue, Y., et al: ‘Multichannel photonic crystal wavelength filter array for near-infrared wavelengths’, J. Lightwave Technol., 2007, 25, (2), pp. 499–503. Available at http://jlt.osa.org/abstract.cfm?URI=jlt-25-2-499.
-
-
86)
-
9. Wu, B., Kumar, A.: ‘Extreme ultraviolet lithography: A review’, J. Vacuum Sci. Technol. B, Microelectron. Nanometer Struct. Process Meas. Phenomena, 2007, 25, (6), pp. 1743–1761, doi: 10.1116/1.2794048.
-
-
87)
-
86. Zhao, D., Zhang, J., Yao, P., et al: ‘Photonic crystal mach-zehnder interferometer based on self-collimation’, Appl. Phys. Lett., 2007, 90, (23), p. 231114, doi: 10.1063/1.2746942.
-
-
88)
-
63. Vlasov, Y.A., O'Boyle, M., Hamann, H.F., et al: ‘Active control of slow light on a chip with photonic crystal waveguides’, Nature, 2005, 438, (7064), pp. 65–69, doi: 10.1038/nature04210.
-
-
89)
-
82. Shi, Y., Dai, D., He, S.: ‘Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler’, IEEE Photonics Technol. Lett., 2007, 19, (11), pp. 825–827.
-
-
90)
-
3. Yu, N., Capasso, Y.: ‘Flat optics with designer metasurfaces’, Nat. Mater., 2014, 13, (2), pp. 139–150, (doi: 10.1038/nmat3839).
-
-
91)
-
16. Wang, Y., Xu, L., Kumar, A., et al: ‘Compact single-etched sub-wavelength grating couplers for O-band application’, Opt. Express, 2017, 25, (24), pp. 30582–30590.
-
-
92)
-
55. Reshef, O., Camayd-Muñoz, P., Vulis, D.I., et al: ‘Direct observation of phase-free propagation in a silicon waveguide’, ACS Photonics, 2017, 4, (10), pp. 2385–2389.
-
-
93)
-
38. Berthier, S., Lafait, J.: ‘Effective medium theory: mathematical determination of the physical solution for the dielectric constant’, Opt. Commun., 1980, 33, (3), pp. 303–306, doi: https://doi.org/10.1016/0030-4018(80)90249-7.
-
-
94)
-
51. Zhou, W., Tsang, H.K.: ‘Dual-wavelength-band subwavelength grating coupler operating in the near infrared and extended shortwave infrared’, Opt. Lett., 2019, 44, (15), pp. 3621–3624, doi: 10.1364/OL.44.003621.
-
-
95)
-
28. Staude, I., Schilling, J.: ‘Metamaterial-inspired silicon nanophotonics’, Nat. Photonics, 2017, 11, p. 274, doi: 10.1038/nphoton.2017.39.
-
-
96)
-
40. Dakss, M.L., Kuhn, L., Heidrich, P.F., et al: ‘Grating coupler for efficient excitation of optical guided waves in thin films’, Appl. Phys. Lett., 1970, 16, (12), pp. 523–525, doi: 10.1063/1.1653091.
-
-
97)
-
48. Streshinsky, M., Shi, R., Novack, A., et al: ‘A compact bi-wavelength polarization splitting grating coupler fabricated in a 220 nm SOI platform’, Opt. Express, 2013, 21, (25), pp. 31019–31028, doi: 10.1364/OE.21.031019.
-
-
98)
-
5. Abadía, N., Bernadin, T., Chaisakul, P., et al: ‘Low-power consumption Franz-Keldysh effect plasmonic modulator’, Opt. Express., 2014, 22, (9), pp. 11236–11243, doi: 10.1364/OE.22.011236.
-
-
99)
-
43. Zhao, Q., Zhou, J., Zhang, F., et al: ‘Mie resonance-based dielectric metamaterials’, Mater. Today, 2009, 12, (12), pp. 60–69, doi: https://doi.org/10.1016/S1369-7021(09)70318-9.
-
-
100)
-
89. Gonzalo Wangüemert-Pérez, J., Cheben, P., Ortega-Moñux, A., et al: ‘Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator’, Opt. Lett., 2014, 39, (15), pp. 4442–4445, doi: 10.1364/OL.39.004442.
-
-
101)
-
7. ‘NanoSOI Design Rules’. Applied Nanotools Inc. Available at: https://www.appliednt.com/nanosoi/sys/resources/rules/, accessed 26 March 2019.
-
-
102)
-
95. D'Mello, Y., Petrescu, D., Skoric, J., et al: ‘Characterization of the photonic response in nitzschia filiformis phytoplankton’. Conf. on Lasers and Electro-Optics (CLEO), San Jose, 2018, pp. 1–2.
-
-
103)
-
81. D'Mello, Y., El-Fiky, E., Skoric, J., et al: ‘Compact, angled polarization splitter: characterization of broadband performance and fabrication tolerance’, IEEE Photonics J., 2018, 10, (6), pp. 1–12, doi: 10.1109/JPHOT.2018.2878905.
-
-
104)
-
103. Tahersima, M.H., Kojima, K., Koike-Akino, T., et al: ‘Deep neural network inverse design of integrated photonic power splitters’, Sci. Rep., 2019, 9, (1), p. 1368, doi: 10.1038/s41598-018-37952-2.
-
-
1)

Related content
