Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design conditions in the middle range for implementation of integrated ring resonators in LiNbO3 by direct laser writing

The aim of this work is to design an integrated optical ring resonator to be implemented in LiNbO3 with a 2.5 mm radius and an operating wavelength of 1550 nm. Considering these ring parameters, a free spectral range of 71.54 pm and a quality factor of ∼ were calculated. The authors apply results to improve the implementation of femtosecond laser writing in lithium niobate crystals. As it is well-known finite difference time domain method requires large memory and time for processing circuits with large footprint (few square mm), in contrast, the beam propagation method allows to simulate large bends in a simple way. RSoft suite design tools commonly represent circles by closed polygons whose geometrical parameters are not optimised to obtain bending losses as least as possible, as suggested by coherent coupling theory. In this sense, the suitable determination of a splice angle (in this case ), shape and length for segments are key parameters in the ring design. For this purpose, an ad hoc software was implemented to overcome this drawback. In summary, a 250 sided polygon side showed a suitable coupling performance and established a new layout approach for middle range rings.

References

    1. 1)
      • 17. Tejerina, M.R., Jaque, D., Torchia, G.A.: ‘A 2d μ -Raman analysis of low repetition rate femto-waveguides in lithium niobate by using a finite element model’, Opt. Mater., 2014, 36, (5), pp. 936940.
    2. 2)
      • 1. Titterton, D., Weston, J.L., Weston, J.: ‘Strapdown inertial navigation technology’, vol. 17, (IET, UK, 2004).
    3. 3)
      • 5. Li, G., Winick, K.A., Youmans, B.R., et al: ‘Design, fabrication and characterization of an integrated optic passive resonator for optical gyroscopes’. Proc. of the 60th Annual Meeting of The Institute of Navigation, Long Beach, CA, USA, 2001, pp. 211216.
    4. 4)
      • 19. Presti, D.A., Guarepi, V., Videla, F., et al: ‘Modeling of the refractive index profile of a femtosecond written waveguide in linbo3’. in ‘Photonic fiber and crystal devices: advances in materials and innovations in device applications XIII', vol. 11123, (International Society for Optics and Photonics, USA, 2019), p. 111230Q.
    5. 5)
      • 16. Presti, D., Videla, F.A., Torchia, G.A.: ‘Optical fiber ring resonator as a high-resolution spectrometer. characterization and applications with single line diode lasers’, Opt. Eng., 2018, 57, (5), p. 057108.
    6. 6)
      • 10. Taylor, H.F.: ‘Power loss at directional change in dielectric waveguides’, Appl. Opt., 1974, 13, (3), p. 642.
    7. 7)
      • 22. Peyton, R., Guarepi, V., Videla, F., et al: ‘Key kinematic parameters in a low-loss power splitter written by femtosecond laser micromachining’, J. Micromech. Microeng., 2018, 28, (5), p. 055011.
    8. 8)
      • 11. Suzuki, K., Takiguchi, K., Hotate, K.: ‘Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit’, J. Lightwave Technol., 2000, 18, (1), pp. 6672.
    9. 9)
      • 15. Wei, H., Krishnaswamy, S.: ‘Polymer micro-ring resonator integrated with a fiber ring laser for ultrasound detection’, Opt. Lett., 2017, 42, (13), p. 2655.
    10. 10)
      • 21. Su, J.-J., Wang, W.-S.: ‘Novel coherently coupled multisectional bending optical waveguide’, IEEE Photonics Technol. Lett., 2002, 14, (8), pp. 11121114.
    11. 11)
      • 14. Levy, S., Klebanov, M., Zadok, A.: ‘High-q ring resonators directly written in as_2s_3 chalcogenide glass films’, Photonics Res., 2015, 3, (3), p. 63.
    12. 12)
      • 4. El-Fiky, E., Osman, M., Sowailem, M., et al: ‘200 gb/s transmission using a dual-polarization o-band silicon photonic intensity modulator for stokes vector direct detection applications’, Opt. Express, 2017, 25, (24), pp. 3033630348.
    13. 13)
      • 3. Guarino, A.: ‘Electro-optic microring resonators in inorganic crystals for photonic applications’. PhD thesis, ETH Zurich, 2007.
    14. 14)
      • 12. Ciminelli, C., Dell'Olio, F., Campanella, C.E., et al: ‘Numerical and experimental investigation of an optical high-q spiral resonator gyroscope’. In 2012 14th Int. Conf. on Transparent Optical Networks (ICTON), Coventry, UK, 2012, pp. 14..
    15. 15)
      • 23. Biasetti, D.A., Tejerina, M.R., Torchia, G.A.: ‘Low contrast buried waveguides index profile reconstruction method considering the evanescent field’, J. Opt., 2015, 17, (8), p. 085801.
    16. 16)
      • 18. Chen, F., Vázquez de Aldana, J.R.: ‘Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining’, Laser Photonics Rev., 2014, 8, (2), pp. 251275.
    17. 17)
      • 13. Rabus, D.G.: ‘Integrated ring resonators’ (Springer, Germany, 2007).
    18. 18)
      • 2. Vannahme, C., Suche, H., Reza, S., et al: ‘Integrated optical ti: Linbo3 ring resonator for rotation rate sensing’. Proc. 13th ECIO, Copenhagen, Denmark, 2007.
    19. 19)
      • 9. Kim, S.-H., Kim, D., Jeon, S.-J., et al: ‘Analysis of regular polygonal ring resonator based on multi-mode waveguide’, in ‘Integrated optics: devices, materials, and technologies XXIII', vol. 10921, (International Society for Optics and Photonics, USA, 2019), p. 109211L.
    20. 20)
      • 7. Tejerina, M.R., Torchia, G.A.: ‘Alternative configuration for an optical ring resonator angular rate sensor by using a standard laser diode’, Appl. Opt., 2011, 50, (20), pp. 34493454.
    21. 21)
      • 6. Ciminelli, C., Dell'Olio, F., Campanella, C.E., et al: ‘Photonic technologies for angular velocity sensing’, Adv. Opt. Photonics., 2010, 2, (3), pp. 370404.
    22. 22)
      • 8. Johnson, L.M., Leonberger, F.J.: ‘Low-loss linbo3 waveguide bends with coherent coupling’, Opt. Lett., 1983, 8, (2), p. 111.
    23. 23)
      • 20. Tejerina, M., Torchia, G.A.: ‘Matfesa: strain and refractive index field estimation after femtosecond laser interaction with transparent material’, Appl. Phys. A, 2013, 110, (3), pp. 591594.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2019.0068
Loading

Related content

content/journals/10.1049/iet-opt.2019.0068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address