access icon free Control of quality factor in laterally coupled vertical cavities

In this work, the authors demonstrate the control of quality factor (Q-factor) is laterally coupled vertical cavities. A 3 μm-side-length square cavity directly connected to a 1.5 μm-width, 10 μm-length Fabry–Perot (FP) cavity has been fabricated and measured. Dynamic tuning of the Q-factor has been successfully observed by bringing the square cavity and FP cavity into resonance. The vertical-cavity-based Q-factor control scheme provides a new choice for the modulation of light and holds potentials for applications associated with optical information processing.

Inspec keywords: Q-factor; surface emitting lasers; optical fabrication; laser cavity resonators; optical couplers; laser tuning; optical modulation

Other keywords: dynamic tuning; quality factor control; vertical-cavity-based Q-factor control scheme; light modulation; side-length square cavity; Fabry–Perot cavity; laterally coupled vertical cavities; optical information processing

Subjects: Laser resonators and cavities; Laser beam modulation, pulsing and switching; mode locking and tuning; Optical fabrication, surface grinding; Laser beam modulation, pulsing and switching; mode locking and tuning; Semiconductor lasers; Lasing action in semiconductors; Laser resonators and cavities

References

    1. 1)
      • 9. Jin, C.Y., Swinkels, M.Y., Johne, R., et al: ‘All-optical control of the spontaneous emission of quantum dots using coupled-cavity quantum electrodynamics’, ArXiv, 2012, 1207, p. 5311.
    2. 2)
      • 4. Li, Y., Zhang, L., Song, M., et al: ‘Coupled-ring-resonator-based silicon modulator for enhanced performance’, Opt. Express, 2008, 16, (17), p. 13342.
    3. 3)
      • 1. Yoshiki, W., Honda, Y., Tetsumoto, T., et al: ‘All-optical tunable buffering with coupled ultra-high Q whispering gallery mode microcavities’, Sci. Rep., 2017, 7, (1), p. 10688.
    4. 4)
      • 12. Xu, Q., Dong, P., Lipson, M.: ‘Breaking the delay-bandwidth limit in a photonic structure’, Nat. Phys., 2007, 3, (6), pp. 406410.
    5. 5)
      • 3. Adams, M.J., Hurtado, A., Labukhin, D., et al: ‘Nonlinear semiconductor lasers and amplifiers for all-optical information processing’, Chaos Interdiscip. J. Nonlinear Sci., 2010, 20, (3), p. 037102.
    6. 6)
      • 7. Jin, C.Y., Johne, R., Swinkels, M.Y., et al: ‘Ultrafast non-local control of spontaneous emission’, Nat. Nanotechnol., 2014, 9, (11), pp. 886890.
    7. 7)
      • 15. He, Y.M., He, Y., Wei, Y.J., et al: ‘On-demand semiconductor single-photon source with near-unity indistinguishability’, Nat. Nanotechnol., 2013, 8, (3), pp. 213217.
    8. 8)
      • 20. Solomon, G.S., Pelton, M., Yamamoto, Y.: ‘Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity’, Phys. Rev. Lett., 2001, 86, (17), pp. 39033906.
    9. 9)
      • 8. Ma, X.W., Huang, Y.Z., Yang, Y.D., et al: ‘Mode coupling in hybrid square-rectangular lasers for single mode operation’, Appl. Phys. Lett., 2016, 109, (7), p. 071102.
    10. 10)
      • 14. Koyama, F., Kinoshita, S., Iga, K.: ‘Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser’, Appl. Phys. Lett., 1989, 55, (3), pp. 221222.
    11. 11)
      • 5. Tanabe, T., Notomi, M., Mitsugi, S., et al: ‘All-optical switches on a silicon chip realized using photonic crystal nanocavities’, Appl. Phys. Lett., 2005, 87, (15), p. 151112.
    12. 12)
      • 11. Uesugi, T., Song, B.-S., Asano, T., et al: ‘Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab’, Opt. Express, 2006, 14, (1), p. 377.
    13. 13)
      • 22. Gérard, J.M., Barrier, D., Marzin, J.Y., et al: ‘Quantum boxes as active probes for photonic microstructures: the pillar microcavity case’, Appl. Phys. Lett., 1996, 69, (4), pp. 449451.
    14. 14)
      • 21. Guo, W.H., Huang, Y.Z., Lu, Q.Y., et al: ‘Modes in square resonators’, IEEE J. Quantum Electron., 2003, 39, (12), pp. 15631566.
    15. 15)
      • 13. Katayama, T., Ooi, T., Kawaguchi, H.: ‘Experimental demonstration of multi-bit optical buffer memory using 1.55-μm polarization bistable vertical-cavity surface-emitting lasers’, IEEE J. Quantum Electron., 2009, 45, (11), pp. 14951504.
    16. 16)
      • 17. Loo, V., Arnold, C., Gazzano, O., et al: ‘Optical nonlinearity for few-photon pulses on a quantum dot-pillar cavity device’, Phys. Rev. Lett., 2012, 109, (16), p. 166806.
    17. 17)
      • 18. Yang, Y., Huang, Y., Che, K., et al: ‘Equilateral-triangle and square resonator semiconductor microlasers’, IEEE J. Sel. Top. Quantum Electron., 2009, 15, (3), pp. 879884.
    18. 18)
      • 10. Johne, R., Schutjens, R., Fattah poor, S., et al: ‘Control of the electromagnetic environment of a quantum emitter by shaping the vacuum field in a coupled-cavity system’, Phys. Rev. A, 2015, 91, (6), p. 063807.
    19. 19)
      • 16. Somaschi, N., Giesz, V., De Santis, L., et al: ‘Near-optimal single-photon sources in the solid state’, Nat. Photonics, 2016, 10, (5), pp. 340345.
    20. 20)
      • 6. Tanaka, Y., Upham, J., Nagashima, T., et al: ‘Dynamic control of the Q factor in a photonic crystal nanocavity’, Nat. Mater., 2007, 6, (11), pp. 862865.
    21. 21)
      • 19. Che, K.J., Yang, Y.D., Huang, Y.Z.: ‘Multimode resonances in metallically confined square-resonator microlasers’, Appl. Phys. Lett., 2010, 96, (5), p. 051104.
    22. 22)
      • 2. Jin, C.Y., Kojima, O., Kita, T., et al: ‘Observation of phase shifts in a vertical cavity quantum dot switch’, Appl. Phys. Lett., 2011, 98, (23), p. 231101.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2019.0064
Loading

Related content

content/journals/10.1049/iet-opt.2019.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading