Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Nano-scale multifunctional logic gate based on graphene/hexagonal boron nitride plasmonic waveguides

The concept and analysis of a nano-scale multifunctional logic gate based on graphene/hexagonal boron nitride (h-BN) plasmonic waveguides at a wavelength of 7.5µm are presented. By using graphene as a metamaterial with outstanding electro-optical properties, various logical operations including AND, OR, and XOR are implemented. The proposed multifunctional structure supports surface plasmons (SPs) whose dispersion properties can be controlled by applying an electrical field to graphene. The effects of the incident polarisation and the substrate of graphene on the transmission of SPs are investigated. Simulations by finite difference time domain method show that the extinction ratios for the presented logical operations are higher than 15dB. Also, the structure has a compact footprint of 1.12µm2 which is suitable for using in integrated photonic circuits. This provides a path for the development of novel nano-scale practical on-chip applications such as plasmonic memory devices.

References

    1. 1)
      • 40. Farmani, A., Miri, M., Sheikhi, M.H.: ‘Design of a high extinction ratio tunable graphene on white graphene polarizer’, IEEE Photonics Technol. Lett., 2017, 30, (2), pp. 153156.
    2. 2)
      • 2. Zhang, X., Cheng, R., Shi, Z., et al: ‘Label-free detection of EcoRi endonuclease activity via fluorescent DNA logic gate’, Sens. Actuators B, Chem., 2017, 244, pp. 387392.
    3. 3)
      • 9. Stubkjaer, K.E.: ‘Semiconductor optical amplifier-based all-optical gates for high-speed optical processing’, IEEE J. Sel. Top. Quantum Electron., 2000, 6, (6), pp. 14281435.
    4. 4)
      • 33. Henck, H., Pierucci, D., Fugallo, G., et al: ‘Direct observation of the band structure in bulk hexagonal boron nitride’, Phys. Rev. B, 2017, 95, (8), p. 085410.
    5. 5)
      • 7. Rezaei, M.H., Zarifkar, A., Miri, M., et al: ‘Design of a high-efficient and ultra-compact full-adder based on graphene-plasmonic structure’, Superlattices Microstruct., 2019 , 129, pp. 139145.
    6. 6)
      • 24. Luo, X., Qiu, T., Lu, W., et al: ‘Plasmons in graphene: recent progress and applications’, Mater. Sci, Eng. R, Rep., 2013, 74, (11), pp. 351376.
    7. 7)
      • 28. Cuevas, M.: ‘Surface plasmon enhancement of spontaneous emission in graphene waveguides’, J. Opt., 2016, 18, (10), p. 105003.
    8. 8)
      • 27. Zhu, B.-S., Wang, Y., Lou, Y.-Y.: ‘Goos-Hänchen-like shift in biased silicene’, J. Appl. Phys., 2016, 119, (16), p. 164304.
    9. 9)
      • 36. Farmani, A., Zarifkar, A., Sheikhi, M.H., et al: ‘Design of a tunable graphene plasmonic-on-white graphene switch at infrared range’, Superlattices Microstruct., 2017, 112, pp. 404414.
    10. 10)
      • 44. Liu, H., Ren, G., Gao, Y., et al: ‘Ultracompact electro-optical logic gates based on graphene–silica metamaterial’, J. Nanophotonics, 2016, 10, (2), p. 026004.
    11. 11)
      • 20. Rezaei, M.H., Zarifkar, A., Miri, M.: ‘Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio’, Opt. Mater., 2018, 84, pp. 572578.
    12. 12)
      • 15. Alipour-Banaei, H., Serajmohammadi, S., Mehdizadeh, F.: ‘All optical NOR and NAND gate based on nonlinear photonic crystal ring resonators’, Opt.-Int. J. Light Electron Opt., 2014, 125, (19), pp. 57015704.
    13. 13)
      • 26. Choi, J.-W., Nam, Y.-S., Lee, W.H.: ‘’OR’ logic function of molecular photodiode consisting of GFP/Viologen/Cytochrome C hetero-film’, Mol. Cryst. Liq. Cryst., 2003, 407, (1), pp. 8996.
    14. 14)
      • 42. Mohammadnejad, S., Chaykandi, Z.F., Bahrami, A.: ‘MMI-based simultaneous all-optical XOR–NAND–OR and XNOR–not multilogic gate for phase-based signals’, IEEE J. Quantum Electron., 2014, 50, (12), pp. 15.
    15. 15)
      • 12. Clark, A.S., Fulconis, J., Rarity, J.G., et al: ‘All-optical-fiber polarization-based quantum logic gate’, Phys. Rev. A, 2009, 79, (3), p. 030303.
    16. 16)
      • 32. Butler, S.Z., Hollen, S.M., Cao, L., et al: ‘Progress, challenges, and opportunities in two-dimensional materials beyond graphene’, ACS Nano, 2013, 7, (4), pp. 28982926.
    17. 17)
      • 13. Chen, Z., Chen, J., Li, Y., et al: ‘Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides’, IEEE Photonics Technol. Lett., 2012, 24, (16), pp. 13661368.
    18. 18)
      • 37. Xiao, Y., Zhang, J., Yu, J., et al: ‘Theoretical investigation of optical modulators based on graphene-coated side-polished fiber’, Opt. Express, 2018, 26, (11), pp. 1375913772.
    19. 19)
      • 41. Li, P.-L., Huang, D.-X., Zhang, X.-L.: ‘SOA-based ultrafast multifunctional all-optical logic gates with Polsk modulated signals’, IEEE J. Quantum Electron., 2009, 45, (12), pp. 15421550.
    20. 20)
      • 14. Ibrahim, T.A., Grover, R., Kuo, L., et al: ‘All-optical AND/NAND logic gates using semiconductor microresonators’, IEEE Photonics Technol. Lett., 2003, 15, (10), pp. 14221424.
    21. 21)
      • 30. Youngblood, N., Anugrah, Y., Ma, R., et al: ‘Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides’, Nano Lett., 2014, 14, (5), pp. 27412746.
    22. 22)
      • 3. Zhao, K., Tang, Y., Wang, Z., et al: ‘Surface charge tuneable fluorescent protein-based logic gates for smart delivery of nucleic acids’, Chem. Commun., 2017, 53, (82), pp. 1132611329.
    23. 23)
      • 22. Wei, H., Wang, Z., Tian, X., et al: ‘Cascaded logic gates in nanophotonic plasmon networks’, Nat. Commun., 2011, 2, p. 387.
    24. 24)
      • 35. Vuong, T., Liu, S., Van der Lee, A., et al: ‘Isotope engineering of Van der Waals interactions in hexagonal boron nitride’, Nature Mater., 2018, 17, (2), p. 152.
    25. 25)
      • 4. Skidin, D., Faizy, O., Krüger, J., et al: ‘Unimolecular logic gate with classical input by single gold atoms’, ACS Nano, 2018, 12, (2), pp. 11391145.
    26. 26)
      • 1. Pita, M., Katz, E.: ‘Multiple logic gates based on electrically wired surface-reconstituted enzymes’, J. Am. Chem. Soc., 2008, 130, (1), pp. 3637.
    27. 27)
      • 6. Jang, S., Hwang, E., Lee, Y., et al: ‘Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals’, Nano Lett., 2015, 15, (4), pp. 25422547.
    28. 28)
      • 29. Bhimanapati, G.R., Lin, Z., Meunier, V., et al: ‘Recent advances in two-dimensional materials beyond graphene’, ACS Nano, 2015, 9, (12), pp. 1150911539.
    29. 29)
      • 18. Rani, P., Kalra, Y., Sinha, R.: ‘Realization of AND gate in Y shaped photonic crystal waveguide’, Opt. Commun., 2013, 298, pp. 227231.
    30. 30)
      • 11. Kaur, N., Singh, N., McCaughan, B., et al: ‘And molecular logic using semiconductor quantum dots’, Sens. Actuators B, Chem., 2010, 144, (1), pp. 8891.
    31. 31)
      • 10. Farmani, A., Farhang, M., Sheikhi, M.H.: ‘High performance polarization-independent quantum dot semiconductor optical amplifier with 22 Db fiber to fiber gain using mode propagation tuning without additional polarization controller’, Opt. Laser Technol., 2017, 93, pp. 127132.
    32. 32)
      • 23. Wei, H., Li, Z., Tian, X., et al: ‘Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks’, Nano Lett., 2010, 11, (2), pp. 471475.
    33. 33)
      • 5. Jana, J., Aditya, T., Ganguly, M., et al: ‘Carbon dot-MnO2 FRET system for fabrication of molecular logic gates’, Sens. Actuators B, Chem., 2017, 246, pp. 716725.
    34. 34)
      • 43. Rani, P., Kalra, Y., Sinha, R.: ‘Design of all optical logic gates in photonic crystal waveguides’, Optik, 2015, 126, (9-10), pp. 950955.
    35. 35)
      • 31. Rezaei, M.H., Zarifkar, A.: ‘Dielectric-loaded graphene-based plasmonic multilogic gate using a multimode interference splitter’, Appl. Opt., 2018, 57, (35), pp. 1010910116.
    36. 36)
      • 16. Rani, P., Kalra, Y., Sinha, R.: ‘Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal’, Opt. Commun., 2016, 374, pp. 148155.
    37. 37)
      • 19. Rezaei, M.H., Zarifkar, A.: ‘Transmission characteristics of a graphene-based plasmonic decoder for THz applications’. IEEE 2018 9th Int. Symp. on Telecommunications (IST), Tehran, Iran, 2018.
    38. 38)
      • 8. Son, C., Kim, S., Byun, Y., et al: ‘Realisation of all-optical multi-functional logic gates using semiconductor optical amplifiers’, Electron. Lett., 2006, 42, (18), p. 1.
    39. 39)
      • 25. Li, F., Shi, M., Huang, C., et al: ‘Multifunctional photoelectrochemical logic gates based on a hemicyanine sensitized semiconductor electrode’, J. Mater. Chem., 2005, 15, (29), pp. 30153020.
    40. 40)
      • 21. Fu, Y., Hu, X., Lu, C., et al: ‘All-optical logic gates based on nanoscale plasmonic slot waveguides’, Nano Lett., 2012, 12, (11), pp. 57845790.
    41. 41)
      • 17. Peng, C., Li, J., Liao, H., et al: ‘Universal linear-optical logic gate with maximal intensity contrast ratios’, ACS Photonics, 2018, 5, (3), pp. 11371143.
    42. 42)
      • 38. Kan, E., Ren, H., Wu, F., et al: ‘Why the band gap of graphene is tunable on hexagonal boron nitride’, J. Phys. Chem. C, 2012, 116, (4), pp. 31423146.
    43. 43)
      • 34. Vuong, T., Cassabois, G., Valvin, P., et al: ‘Deep ultraviolet emission in hexagonal boron nitride grown by high-temperature molecular beam epitaxy’, 2D Mater., 2017, 4, (2), p. 021023.
    44. 44)
      • 39. Dean, C.R., Young, A.F., Meric, I., et al: ‘Boron nitride substrates for high-quality graphene electronics’, Nat. Nanotechnol., 2010, 5, (10), p. 722.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2019.0054
Loading

Related content

content/journals/10.1049/iet-opt.2019.0054
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address