http://iet.metastore.ingenta.com
1887

Thermal stability analysis of buffered layer P3HT/P3HT:PCBM organic solar cells

Thermal stability analysis of buffered layer P3HT/P3HT:PCBM organic solar cells

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Here to determine the thermal stability of buffered layer organic solar cell (BL-OSC), the effect of post anneal treatment has been studied. To investigate the effect of post annealing, the organic solar cells (OSCs) are annealed at the 120°C for different time duration. It has been observed that the BL-OSC structure exhibits the better thermal stability. Further, as the authors vary the post-annealing time duration from 0 min to 20 min, the power conversion efficiency (PCE) in the case BL-OSC drops by ∼20%, whereas in conventional OSC, the PCE drops by ∼35%. This annealing dependent study shows that, in conventional OSC structure an increase in phase segregation between donor and acceptor molecules reduces exciton dissociation and charge separation, this leads to sharp increase in series resistance and significant reduction in fill factor of the device. Whereas in the case of BL-OSS, there is a minimum reduction in the fill factor, which also determines the superior carrier collection and low recombination on the elevated annealing conditions. Further, the experimental results show that, in comparison with the conventional OSC structure, inserting the pure P3HT interlayer between PEDOT:PSS (hole transport layer) and P3HT:PCBM (photoactive layer) improves the PCE of the device by 34%.

References

    1. 1)
      • 1. Yang, F., Forrest, S.R.: ‘Photocurrent generation in nanostructured organic solar cells’, ACS Nano, 2008, 2, (5), pp. 10221032.
    2. 2)
      • 2. Li, G., Shrotriya, V., Huang, J., et al: ‘High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends’, Nature Mater., 2005, 4, pp. 864868.
    3. 3)
      • 3. Ma, W., Yang, C., Gong, X., et al: ‘Thermally stable efficient polymer solar cell with nanoscale control of interpenetrated network morphology’, Adv. Funct. Mater., 2005, 15, (10), pp. 16171622.
    4. 4)
      • 4. Holliday, S., Ashraf, R. S., Wadsworth, A., et al: ‘High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor’, Nat. Commun., 2016, 7, p. 11585.
    5. 5)
      • 5. Li, X., Liu, X., Zhang, W., et al: ‘Fullerene-free organic solar cells with efficiency over 12% based on EDTA–ZnO hybrid cathode interlayer’, Chem. Mater., 2017, 29, (10), pp. 41764180.
    6. 6)
      • 6. Li, M., Gao, K., Wan, X., et al: ‘Solution-processed organic tandem solar cells with power conversion efficiencies >12%’, Nat. Photonics, 2017, 1, pp. 8590.
    7. 7)
      • 7. Chandrasekaran, N., Gann, E., Jain, N., et al: ‘Correlation between photovoltaic performance and interchain-ordering induced delocalization of electronics states in conjugated polymer blends’, ACS Appl. Mater. Interfaces, 2016, 8, (31), pp. 2024320250.
    8. 8)
      • 8. Huang, W., Gann, E., Chandrasekaran, N., et al: ‘Influence of fullerene acceptor on the performance, microstructure, and photophysics of low bandgap polymer solar cells’, Adv. Energy. Mater., 2017, 7, (11), p. 1602197.
    9. 9)
      • 9. Tress, W., Leo, K., Riede, M.: ‘Influence of hole-transport layers and donor materials on open-circuit voltage and shape of IV curves of organic solar cells’, Adv. Funct. Mater., 2011, 21, (11), pp. 21402149.
    10. 10)
      • 10. Ju, H., Knesting, K. M., Zhang, W., et al: ‘Interplay between interfacial structures and device performance in organic solar cells: a case study with the low work function metal calcium’, ACS Appl. Mater. Interfaces, 2015, 8, (3), pp. 21252131.
    11. 11)
      • 11. Xu, Z., Chen, L. M., Yang, G., et al: ‘Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells’, Adv. Funct. Mater., 2009, 19, (8), pp. 12271234.
    12. 12)
      • 12. Quiles, M. C., Ferenczi, T., Agostinelli, T., et al: ‘Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends’, Nature Mater., 2008, 7, pp. 158164.
    13. 13)
      • 13. Kim, Y., Choulis, S. A., Nelson, J., et al: ‘Device annealing effect in organic solar cells with blends of regioregular poly3-hexylthiophene and soluble fullerene’, Appl. Phys. Lett., 2005, 86, (6), p. 063502.
    14. 14)
      • 14. Reinspach, J. A., Diao, Y., Giri, G., et al: ‘Tuning the morphology of solution-sheared P3HT:PCBM films’, ACS Appl. Mater. Interfaces, 2016, 8, (3), pp. 17421751.
    15. 15)
      • 15. He, X., Gao, F., Tu, G., et al: ‘Formation of well-ordered heterojunctions in polymer:PCBM photovoltaic devices’, Adv. Funct. Mater., 2011, 21, (1), pp. 139146.
    16. 16)
      • 16. Machui, F., Langner, S., Zhu, X., et al: ‘Determination of the P3HT:PCBM solubility parameters via a binary solvent gradient method: impact of solubility on the photovoltaic performance’, Sol. Energy Mater. Sol. Cells, 2012, 100, pp. 138146.
    17. 17)
      • 17. Park, J. H., Kim, J. S., Lee, J. H., et al: ‘Effect of annealing solvent solubility on the performance of poly(3-hexylthiophene)/methanofullerene solar cells’, J. Phys. Chem. C, 2009, 113, (40), pp. 1757917584.
    18. 18)
      • 18. Baek, W., Yoon, T. S., Lee, H. H., et al: ‘Composition-dependent phase separation of P3HT:PCBM composites for high performance organic solar cells’, Org. Electron., 2010, 11, pp. 933937.
    19. 19)
      • 19. Seo, J. H., Gutacker, A., Sun, Y., et al: ‘Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer’, J. Am. Chem. Soc., 2011, 133, (22), pp. 84168419.
    20. 20)
      • 20. Wei, Q., Nishizawa, T., Tajima, K., et al: ‘Self-organized buffer layers in organic solar cells’, Adv. Mater., 2008, 20, (11), pp. 22112216.
    21. 21)
      • 21. Deschler, F., Riedel, D., Ecker, B., et al: ‘Increasing organic solar cell efficiency with polymer interlayers’, Phys. Chem. Chem. Phys., 2013, 15, (3), pp. 764769.
    22. 22)
      • 22. Kim, J. S., Lee, J. H., Park, J. H., et al: ‘High-efficiency organic solar cells based on preformed poly(3-hexylthiophene) nanowires’, Adv. Funct. Mater., 2011, 21, (3), pp. 480486.
    23. 23)
      • 23. Oh, J. Y., Jang, W. S., Lee, T., et al: ‘Driving vertical phase separation in a bulk-heterojunction by inserting a poly 3-hexylthiophene layer for highly efficient organic solar cells’, Appl. Phys. Lett., 2011, 98, (2), p. 023303.
    24. 24)
      • 24. Kang, Y., Kim, D., Kim, J., et al: ‘Progress towards fully spray-coated semitransparent inverted organic solar cells with a silver nanowire electrode’, Org. Electron., 2014, 15, pp. 21732177.
    25. 25)
      • 25. Hermerschmidt, F., Choulis, S. A.: ‘Influence of the hole transporting layer on the thermal stability of inverted organic photovoltaics using accelerated heat lifetime protocols’, ACS Appl. Mater. Interfaces, 2017, 9, (16), pp. 1413614144.
    26. 26)
      • 26. Padinger, F., Rittberger, R. S., Sariciftci, N. S.: ‘Effects of postproduction treatment on plastic solar cells’, Adv. Funct. Mater., 2003, 13, (1), pp. 8588.
    27. 27)
      • 27. Chander, N., Singh, S., Iyer, S. S.K.: ‘Stability and reliability of P3HT:PC61BM inverted organic solar cells’, Sol. Energy Mater. Sol. Cells, 2016, 161, pp. 407415.
    28. 28)
      • 28. Ray, B., Nair, P. R., Alam, M.A.: ‘Annealing dependent performance of organic bulk heterojunction solar cells: a theoretical perspective’, Sol. Energy Mater. Sol. Cells, 2011, 95, (12), pp. 32873294.
    29. 29)
      • 29. Lifshitz, I., Slyozov, V.: ‘The kinetics of precipitation from supersaturated solidsolutions’, J. Phys. Chem. Solids, 1961, 19, (1), pp. 3550.
    30. 30)
      • 30. Verploegen, E., Mondal, R., Bettinger, C. J., et al: ‘Effects of thermal annealing upon the morphology of polymer–fullerene blends’, Adv. Funct. Mater., 2010, 20, (20), pp. 35193529.
    31. 31)
      • 31. Cheacharoen, R., Nguyen, T.: ‘Assessing the stability of high performance solution processed small molecule solar cells’, Sol. Energy Mater. Sol. Cells, 2017, 161, pp. 368376.
    32. 32)
      • 32. Wu, C. C., Wu, C. I., Sturm, J. C., et al: ‘Surface modification of indium tin oxide by plasma treatment: an effective method to improve the efficiency, brightness, and reliability of organic light emitting devices’, Appl. Phys. Lett., 1997, 70, (11), pp. 13481350.
    33. 33)
      • 33. Ghosekar, I.C., Patil, G. C.: ‘Improving OSC efficiency using solution processed poly(3-hexylthiophene) buffer layer’, Micro Nano Lett., 2019, 14, (1), pp. 7477.
    34. 34)
      • 34. Pivrikas, A., Neugebauer, H. N. S., Sariciftci, N.S.: ‘Charge carrier lifetime and recombination in bulk heterojunction solar cells’, IEEE J. Sel. Top. Quantum Electron., 2010, 16, (6), pp. 17461758.
    35. 35)
      • 35. Proctor, C. M., Kuik, M., Nguyen, T.: ‘Charge carrier recombination in organic solar cells’, Prog. Polym. Sci., 2013, 38, (12), pp. 19411960.
    36. 36)
      • 36. Heiber, M. C., Nguyen, T., Deibel, C.: ‘Charge carrier concentration dependence of encounter-limited bimolecular recombination in phase-separated organic semiconductor blends’, Phys. Rev. B, 2016, 93, (20), p. 205204.
    37. 37)
      • 37. Wurfel, U., Neher, D., Spies, A., et al: ‘Impact of charge transport on current–voltage characteristics and power-conversion efficiency of organic solar cells’, Nat. Commun., 2015, 6, p. 6951.
    38. 38)
      • 38. Notarianni, M., Vernon, K., Chou, A., et al: ‘Plasmonic effect of gold nanoparticles in organic solar cells’, Sol. Energy, 2014, 106, pp. 2337.
    39. 39)
      • 39. Pala, R., White, J., Barnard, E., et al: ‘Design of plasmonic thin-film solar cells with broadband absorption enhancements’, Adv. Mater., 2009, 21, (34), pp. 35043509.
    40. 40)
      • 40. Baek, S., Park, G., Noh, J., et al: ‘[email protected] core shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells’, ACS Nano, 2014, 8, (4), pp. 33023312.
    41. 41)
      • 41. Lee, Y., Kim, D., Kim, T.: ‘Enhancement of the power conversion efficiency due to the plasmonic resonant effect of Au nanoparticles in ZnO nanoripples’, Org. Electron., 2016, 37, pp. 7479.
    42. 42)
      • 42. Li, X., Choy, W. C. H., Huo, L., et al: ‘Dual plasmonic nanostructures for high performance inverted organic solar cells’, Adv. Mater., 2012, 24, (22), pp. 30463052.
    43. 43)
      • 43. Kang, M., Kim, M., Kim, J., et al: ‘Organic solar cells using nanoimprinted transparent metal electrodes’, Adv. Mater., 2008, 20, (23), pp. 44084413.
    44. 44)
      • 44. Hsu, M., Yu, P., Huang, J., et al: ‘Balanced carrier transport in organic solar cells employing embedded indium-tinoxide nanoelectrodes’, Appl. Phys. Lett., 2011, 98, (7), p. 073308.
    45. 45)
      • 45. Yu, P., Chang, C., Su, M., et al: ‘Embedded indium-tin-oxide nanoelectrodes for efficiency and lifetime enhancement of polymer-based solar cells’, Appl. Phys. Lett., 2010, 96, (15), p. 153307.
    46. 46)
      • 46. Ray, B., Khan, M., Black, C., et al: ‘Nanostructured electrodes for organic solar cells: analysis and design fundamentals’, IEEE J. Photovoltaics, 2013, 37, (1), pp. 318329.
    47. 47)
      • 47. Beck, J., Ray, B., Grote, R., et al: ‘Nanostructured electrodes improve the fill factor of organic photovoltaics’, IEEE J. Photovoltaics, 2014, 48, (4), pp. 11001106.
    48. 48)
      • 48. Treat, N. D., Mates, T. E., Hawker, C. J., et al: ‘Temperature dependence of the diffusion coefficient of PCBM in poly(3-hexylthiophene)’, Macromolecules, 2013, 46, (3), pp. 10021007.
    49. 49)
      • 49. Watts, B., Belcher, W. J., Thomsen, L., et al: ‘A quantitative study of PCBM diffusion during annealing of P3HT: PCBM blend films’, Macromolecules, 2009, 42, (21), pp. 83928397.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5173
Loading

Related content

content/journals/10.1049/iet-opt.2018.5173
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address