access icon free Design guidelines for edge-coupled waveguide unitravelling carrier photodiodes with improved bandwidth

This study presents experimental and simulation results for edge-coupled waveguide unitravelling-carrier (UTC) photodiodes based on an InGaAs/InP heterostructure. Experimental results are used to calibrate the numerical device simulator. The authors study how different aspects of the UTC photodiode epistructure and contacts impact on the overall device bandwidth, calculating the photoresponse for different structural parameters and doping concentration profiles. The effect of these parameters on the 3-dB cut-off frequency is studied, and design guidelines for UTC photodiodes with improved performance are presented. The UTC photodiode simulated using authors’ design guidelines has a 3 dB cut-off frequency of 49 GHz, a factor of 2 larger than the 25 GHz cut-off of the fabricated UTC photodiode.

Inspec keywords: indium compounds; III-V semiconductors; integrated optoelectronics; gallium arsenide; photodiodes

Other keywords: 3-dB cut-off frequency; improved performance; device bandwidth; fabricated UTC photodiode; design guidelines; improved bandwidth; structural parameters; InGaAs-InP heterostructure; InGaAs-InP; frequency 49.0 GHz; noise figure 3.0 dB; edge-coupled waveguide unitravelling carrier photodiodes; frequency 25.0 GHz; numerical device simulator; 3 dB cut-off frequency; edge-coupled waveguide unitravelling-carrier; experimental results; contacts impact; doping concentration profiles

Subjects: Integrated optoelectronics; Photoelectric devices

References

    1. 1)
      • 2. Ishibashi, T., Kodama, S., Shimizu, N., et al: ‘High-speed response of uni-traveling-carrier photodiodes’, Jpn. J. Appl. Phys., 1997, 36, (10R), p. 6263.
    2. 2)
      • 12. Li, Z., Pan, H., Chen, H., et al: ‘High-saturation-current modified uni-traveling-carrier photodiode with cliff layer’, IEEE J. Quantum Electron., 2010, 46, (5), pp. 626632.
    3. 3)
      • 7. Guo, L., Huang, Y., Duan, X., et al: ‘High-speed modified uni-traveling-carrier photodiode with a new absorber design’, Chin. Opt. Lett., 2012, 10, (s1), p. S12301.
    4. 4)
      • 11. Shimizu, N., Watanabe, N., Furuta, T., et al: ‘InP–InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz’, IEEE Photonics Technol. Lett., 1998, 10, (3), pp. 412414.
    5. 5)
      • 5. Klamkin, J., Ramaswamy, A., Chang, Y.-C., et al: ‘Uni-traveling-carrier photodiodes with increased output response and low intermodulation distortion’. Microwave Photonics, 2007 IEEE Int. Topical Meeting on, Victoria, Canada, 2007, pp. 1417.
    6. 6)
      • 4. Ishibashi, T., Furuta, T., Fushimi, H., et al: ‘Inp/InGaAs uni-traveling-carrier photodiodes’, IEICE Trans. Electron., 2000, 83, (6), pp. 938949.
    7. 7)
      • 17. Beling, A., Xie, X., Campbell, J.C.: ‘High-power, high-linearity photodiodes’, Optica, 2016, 3, (3), pp. 328338.
    8. 8)
      • 8. Srivastava, S.: ‘Simulation study of InP-based uni-traveling carrier photodiode’, University of Cincinnati, 2003.
    9. 9)
      • 15. S.I.L.V.A.C.O, Inc.: ‘ATLAS user's manual’, Santa Clara, CA, 2016.
    10. 10)
      • 16. Sharma, R.K., Gupta, R., Gupta, M., et al: ‘Dual-material double-gate SOI n-MOSFET: gate misalignment analysis’, IEEE Trans. Electron Devices, 2009, 56, (6), pp. 12841291.
    11. 11)
      • 13. Jin, L., Xiong, B., Luo, Y., et al: ‘Ultrafast dual-drifting layer uni-traveling carrier photodiode with high saturation current’, Opt. Express, 2016, 24, (8), pp. 84208428.
    12. 12)
      • 18. Sun, S., Liang, S., Xu, J., et al: ‘Evanescently coupled waveguide InGaAs UTC-PD having an over 21 GHz bandwidth under zero bias’, IEEE Photonics Technol. Lett., 2017, 29, (14), pp. 11551158.
    13. 13)
      • 3. Meng, Q., Wang, H., Liu, C., et al: ‘High-speed and high-responsivity InP-based uni-traveling-carrier photodiodes’, IEEE J. Electron Devices Soc., 2017, 5, (1), pp. 4044.
    14. 14)
      • 14. Banik, B., Vukusic, J., Hjelmgren, H., et al: ‘UTC-PD Integration for submillimetre-wave generation’. 19th Int. Symp. on Space Terahertz Technology, Groningen, Netherlands, 2008, p. 7.
    15. 15)
      • 1. Tavernier, F., Steyaert, M.: ‘High-speed optical receivers with integrated photodiode in nanoscale CMOS’ (Springer Science & Business Media, USA, 2011).
    16. 16)
      • 20. Li, C., Xue, C.L., Liu, Z., et al: ‘High-responsivity vertical-illumination Si/Ge uni-traveling-carrier photodiodes based on silicon-on-insulator substrate’, Sci. Rep., 2016, 6, p. 27743.
    17. 17)
      • 10. Jun, D.-H., Jang, J.-H., Adesida, I., et al: ‘Improved efficiency-bandwidth product of modified uni-traveling carrier photodiode structures using an undoped photo-absorption layer’, Jpn. J. Appl. Phys., 2006, 45, (4S), p. 3475.
    18. 18)
      • 6. Muramoto, Y., Fukano, H., Furuta, T.: ‘A polarization-independent refracting-facet uni-traveling-carrier photodiode with high efficiency and large bandwidth’, J. Light. Technol., 2006, 24, (10), pp. 38303834.
    19. 19)
      • 9. Zhou, Q., Cross, A. S., Beling, A., et al: ‘High-power V-band InGaAs/InP photodiodes’, IEEE Photon. Technol. Lett., 2013, 25, (10), pp. 907909.
    20. 20)
      • 19. Li, C., Xue, C.-L., Li, C.-B., et al: ‘High bandwidth surface-illuminated InGaAs/InP uni-travelling-carrier photodetector’, Chin. Phys. B, 2013, 22, (11), p. 118503.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5171
Loading

Related content

content/journals/10.1049/iet-opt.2018.5171
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading