access icon free Dynamic range enhancement of OTDR using lifting wavelet transform-modified particle swarm optimisation scheme

The optical time domain reflectometry (OTDR) is the only investigation tool for the optical fibre continuity measurement and is capable of verifying inline splices and locating fibre faults. As per the literature review, most of the distributed fibre sensors are designed using OTDR principle. Dynamic range plays a major role in such instruments. Dynamic range enhancement of OTDR is proposed using the lifting wavelet transform (LWT)-modified particle swarm optimisation (MPSO) scheme. This scheme enables us to design customised lifting wavelet filters to improve the signal-to-noise ratio which in turn improvises the dynamic range. This study proposes and demonstrates the application of LWT along with the MPSO evolutionary algorithm to obtain optimum threshold, in order to mitigate the noisy lifting wavelet coefficients effectively. The proposed scheme is employed for OTDR measurement up to 50 km (silica optical fibre), using 10 dBm of laser input power. As compared with the conventional wavelet regularised deconvolution schemes, the authors’ proposed scheme offers a 3.42 dB enhancement in the dynamic range under a lower computational complexity requirement. The proposed study is carried out using computer simulation using MATLAB 15.0 software. The results were experimentally validated.

Inspec keywords: computational complexity; fibre optic sensors; evolutionary computation; optical fibre filters; particle swarm optimisation; distributed sensors; wavelet transforms; optical fibre testing; optical time-domain reflectometry

Other keywords: dynamic range enhancement; MPSO evolutionary algorithm; laser input power; noisy lifting wavelet coefficients; OTDR measurement; OTDR principle; MATLAB 15.0 software; inline splices; distributed fibre sensors; SiO2; signal-to-noise ratio; silica optical fibre; lifting wavelet filters; fibre fault location; computational complexity; computer simulation; optical time domain reflectometry; optical fibre continuity measurement; lifting wavelet transform-modified particle swarm optimisation scheme

Subjects: Optical coatings and filters; Fibre optic sensors; Fibre optic sensors; fibre gyros; Optical fibre testing and measurement of fibre parameters; Other fibre optical devices and techniques; Optical refractometry and reflectometry; Spectral and other filters; Fibre optics

References

    1. 1)
      • 9. Healey, P.: ‘Instrumentation principles for optical time domain reflectometry’, J. Phys. E: Sci. Instrum., 1986, 19, (1), pp. 334341.
    2. 2)
      • 19. Huimin, C., Ruimei, Z., Yanli, H.: ‘Improved threshold denoising method based on wavelet transform’. Proc. Int. Conf. Medical Phys. and Biomedical Eng. (ICMPBE), Shandong, China, 2012, pp. 13541359.
    3. 3)
      • 17. Qin, Z, Chen, H., Chang, J: ‘Detection performance improvement of distributed vibration sensor based on curvelet denoising method’, J. MDPI Sens., 2017, 1380, (17), pp. 118.
    4. 4)
      • 21. Prusa, Z., Rajmic, P.: ‘Real-time lifting wavelet transform algorithm’, J. Signal Process., 2011, 2, (3), pp. 5359.
    5. 5)
      • 3. Hayashi, N., Mizuno, Y., Nakamura, K.: ‘Distributed Brillouin sensing with centimeter-order spatial resolution in polymer optical fibers’, J. Lightwave Technol., 2014, 32, (21), pp. 39994003.
    6. 6)
      • 7. Barnoski, M.K., Jensen, S.M.: ‘Fiber waveguides: a novel technique for investigating attenuation characteristics’, Appl. Opt., 1976, 15, (9), pp. 21122115.
    7. 7)
      • 8. Tateda, M., Horiguchi, T.: ‘Advances in optical time-domain reflectometry’, J. Lightwave Technol., 1989, 7, (8), pp. 12171224.
    8. 8)
      • 12. Yan, S.Z., Chyan, L.S.: ‘Performance enhancement BOTDR fiber optic sensor for oil and gas pipeline monitoring’, Opt. Fiber Technol., 2010, 16, (1), pp. 100109.
    9. 9)
      • 13. Wu, H., Xiao, S., Li, X., et al: ‘Separation and determination of the disturbing signals in phase-sensitive optical time domain reflectometry’, J. Lightwave Technol., 2015, 33, (15), pp. 31563162.
    10. 10)
      • 10. Moura, J.: ‘Detection and characterisation of events with an OTDR’, Opt. Commun., 2015, 1, (1), pp. 15.
    11. 11)
      • 14. Yun, L., Lidong, L.V., Li, H., et al: ‘Research on noise reduction method of long distance optical fiber sensor for transmission line on-line monitoring’. Proc. IEEE Int. Conf. Energy Internet & Energy System Integration (EI2), Beijing, China, 2017, pp. 15.
    12. 12)
      • 4. Li, Z., Yan, L., Shao, L., et al: ‘Coherent BOTDA sensor with single-sideband modulated probe light’, J. Photonics Technol., 2016, 8, (1), pp. 1380413810.
    13. 13)
      • 27. Nazarathy, M., Newton, S.A., Giffard, R.P., et al: ‘Real-time long range complementary correlation optical time domain reflectometer’, J. Lightwave Technol., 1989, 7, (1), pp. 2438.
    14. 14)
      • 23. Xu, X.: ‘Single pulse threshold detection method with lifting wavelet denoising based on modified particle swarm optimization’, J. Infrared Phys. Technol., 2018, 88, (1), pp. 174183.
    15. 15)
      • 16. Olcer, I., Oncu, A.: ‘Adaptive temporal matched filtering for noise suppression in fiber optic-distributed acoustic sensing’, J. MDPI Sens., 2017, 1288, (17), pp. 127.
    16. 16)
      • 6. Shlomi, O., Preter, E., Ba, D., et al: ‘Double-pulse pair Brillouin optical correlation domain analysis’, Opt. Express, 2016, 24, (23), pp. 2686726876.
    17. 17)
      • 15. Qin, Z., Chen, H., Chang, J.: ‘Signal to noise ratio enhancement based on empirical mode decomposition in phase-sensitive optical time domain reflectometry systems’, J. MDPI Sens., 2017, 1870, (17), pp. 110.
    18. 18)
      • 26. Furukawa, S., Tanaka, K., Koyamada, Y., et al: ‘High dynamic range coherent OTDR for fault location in optical amplifier systems’. Proc. IEEE Int. Conf. Instrumentation and Measurement Technol., Hamamatsu, Japan, 1994, pp. 106109.
    19. 19)
      • 5. Minardo, A., Bernini, R., Zeni, L.: ‘Distributed temperature sensing in polymer optical fiber by BOFDA’, Photonics Technol. Lett., 2014, 26, (4), pp. 387390.
    20. 20)
      • 11. Wang, Y., Sun, X., Xue, Q., et al: ‘The study of the Raman-based optical fiber-folded distributed temperatures sensing system with simplex code’, Opt. Commun., 2018, 420, (1), pp. 200204.
    21. 21)
      • 18. Bahrampour, A.R., Maasoumi, F.: ‘Resolution enhancement in long pulse OTDR for application in structural health monitoring’, Fiber Opt. Technol., 2010, 16, (1), pp. 240249.
    22. 22)
      • 24. Zhang, X.P., Desai, M.D.: ‘Adaptive denoising based on SURE risk’, Signal Process. Lett., 1998, 5, (10), pp. 265267.
    23. 23)
      • 20. Anilkumar, P.H., Beulet, P.A.S.: ‘Lifting-based discrete wavelet transform for real-time signal detection’, Sci. Technol., 2015, 8, (25), pp. 14.
    24. 24)
      • 1. Soto, M.A., Sahu, P.K., Bolognini, G., et al: ‘Brillouin-based distributed temperature sensor employing pulse coding’, IEEE Sens. J., 2008, 8, (3), pp. 225226.
    25. 25)
      • 2. Lombera, R.R., Minardo, A., Bernini, R., et al: ‘Experimental demonstration of a Brillouin optical frequency-domain reflectometry (BOFDR) sensor’. Proc. SPIE Int. Conf. Opt. Fiber Sens., Jeju-do, South Korea, 2017, pp. 14.
    26. 26)
      • 25. Tangudu, R., Sahu, P.K.: ‘Strain resolution enhancement in Rayleigh-OTDR based DSS system using LWT-MPSO scheme’, J. Opt., 2018, 176, (1), pp. 102119.
    27. 27)
      • 22. Tian, D., Shi, Z.: ‘MPSO: modified particle swarm optimization and its applications’, J. Swarm Evol. Comput., 2017, 41, (1), pp. 120.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5163
Loading

Related content

content/journals/10.1049/iet-opt.2018.5163
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading