Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Tris-(8-hydroxyquinoline) aluminium thin film as saturable absorber for passively Q-switched erbium-doped fibre laser

A passively Q-switched erbium-doped fibre laser was demonstrated by using tris-(8-hydroxyquinoline)aluminium (Alq3) organic material as a passive saturable absorber (SA). The SA was fabricated by a drop casting technique at room temperature and incorporated into a laser cavity by inserting it between two optical fibre ferrules. The Q-switched fibre laser operates at a centre wavelength of 1559 nm with a full-width half maximum of 1 nm. The generated pulse train is stable and has a pulse width decreased from 6.65 to 1.2 µs and the pulse repetition rate increased from 31.65 to 144.5 kHz as the pump power increased from 20 to 122 mW. The maximum pulse energy obtained is 63.89 nJ. This work indicates that the Alq3 as SA has a great potential to be utilised for pulsed laser generation. To the best of the authors' knowledge, this is the first time an organic material is utilised as a SA device for generating a stable Q-switched laser pulse.

References

    1. 1)
      • 41. Andrade, G., Barbosa-Stancioli, E., Mansur, A.P., et al: ‘Design of novel hybrid organic–inorganic nanostructured biomaterials for immunoassay applications’, Biomed. Mater., 2006, 1, (4), p. 221.
    2. 2)
      • 15. Zakaria, U., Harun, S., Reddy, P., et al: ‘Q-switched hafnium bismuth erbium-doped fiber laser with bismuth (III) telluride based saturable absorber’, Chalcogenide Lett., 2018, 15, (4), pp. 181186.
    3. 3)
      • 13. Bao, Q.L., Zhang, H., Wang, Y., et al: ‘Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers’, Adv. Funct. Mater., 2009, 19, (19), pp. 30773083.
    4. 4)
      • 32. Nakayama, T., Itoh, Y., Kakuta, A.: ‘Organic photo-and electroluminescent devices with double mirrors’, Appl. Phys. Lett., 1993, 63, (5), pp. 594595.
    5. 5)
      • 29. Kim, O.Y., Lee, J.Y.: ‘High efficiency deep blue phosphorescent organic light-emitting diodes using a tetraphenylsilane based phosphine oxide host material’, J. Ind. Eng. Chem., 2012, 18, (3), pp. 10291032.
    6. 6)
      • 14. Sobon, G.: ‘Mode-locking of fiber lasers using novel two-dimensional nanomaterials: graphene and topological insulators [invited]’, Photonics Res., 2015, 3, (2), pp. A56A63.
    7. 7)
      • 61. Degnan, J.J.: ‘Optimization of passively Q-switched lasers’, IEEE J. Quantum Electron., 1995, 31, (11), pp. 18901901.
    8. 8)
      • 17. Ahmad, H., Salim, M., Azzuhri, S.R., et al: ‘A passively Q-switched ytterbium-doped fiber laser based on a few-layer Bi2Se3 saturable absorber’, Laser Phys., 2015, 25, (6), p. 065102.
    9. 9)
      • 47. Quintero, O.M.S., Chaparro, W.A., Ipaz, L., et al: ‘Influence of the microstructure on the electrochemical properties of Al-Cr-N coatings deposited by Co-sputtering method from a Cr-Al binary target’, Mater. Res., 2013, 16, (1), pp. 204214.
    10. 10)
      • 40. Mansur, H.S., Sadahira, C.M., Souza, A.N., et al: ‘Ftir spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde’, Mater. Sci. Eng., C, 2008, 28, (4), pp. 539548.
    11. 11)
      • 42. Awada, H., Daneault, C.: ‘Chemical modification of poly (vinyl alcohol) in water’, Appl. Sci., 2015, 5, (4), pp. 840850.
    12. 12)
      • 24. Clark, J., Lanzani, G.: ‘Organic photonics for communications’, Nat. Photonics, 2010, 4, (7), p. 438.
    13. 13)
      • 51. Cuba, M., Muralidharan, G.: ‘Improved luminescence intensity and stability of thermal annealed Zno incorporated Alq 3 composite films’, J. Fluoresc., 2015, 25, (6), pp. 16291635.
    14. 14)
      • 62. Chen, Y., Zhao, C.J., Chen, S.Q., et al: ‘Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser’, IEEE J. Sel. Top. Quantum Electron., 2014, 20, (5), p. 0900508.
    15. 15)
      • 69. Bogusławski, J., Kowalczyk, M., Iwanowski, P., et al: ‘Exploiting nonlinear properties of pure and Sn-doped Bi2te2se for passive Q-switching of all-polarization maintaining ytterbium- and erbium-doped fiber lasers’, Sci. Rep., 2017, 7, (1), p. 7428.
    16. 16)
      • 7. Hakulinen, T., Okhotnikov, O.G.: ‘8 ns fiber laser Q switched by the resonant saturable absorber mirror’, Opt. Lett., 2007, 32, (18), pp. 26772679.
    17. 17)
      • 34. Li, H., Zhang, F., Wang, Y., et al: ‘Synthesis and characterization of tris-(8-hydroxyquinoline) aluminum’, Mater. Sci. Eng., B, 2003, 100, (1), pp. 4046.
    18. 18)
      • 27. Lee, C.W., Kim, O.Y., Lee, J.Y.: ‘Organic materials for organic electronic devices’, J. Ind. Eng. Chem., 2014, 20, (4), pp. 11981208.
    19. 19)
      • 57. Satoh, N., Nakashima, T., Kamikura, K., et al: ‘Quantum size effect in Tio2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates’, Nat. Nanotechnol., 2008, 3, p. 106.
    20. 20)
      • 30. Jung, M.-J., Jeong, E., Kim, Y., et al: ‘Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors’, J. Ind. Eng. Chem., 2013, 19, (4), pp. 13151319.
    21. 21)
      • 65. Dong, B., Hao, J., Hu, J., et al: ‘Wide pulse-repetition-rate range tunable nanotube Q-switched low threshold erbium-doped fiber Laser’, IEEE Photonics Technol. Lett., 2010, 22, (24), pp. 18531855.
    22. 22)
      • 23. Boulet, J., Mohammadpour, A., Shankar, K.: ‘Insights into the solution crystallization of oriented Alq3 and Znq2 microprisms and nanorods’, J. Nanosci. Nanotechnol., 2015, 15, (9), pp. 66806689.
    23. 23)
      • 55. Ahmad, H., Ismail, M.A., Sathiyan, S., et al: ‘S-band Q-switched fiber laser using Mose2 saturable absorber’, Opt. Commun., 2017, 382, pp. 9398.
    24. 24)
      • 21. Latiff, A.A., Kadir, N.A., Ismail, E.I., et al: ‘All-fiber dual-wavelength Q-switched and mode-locked EDFL by Smf-Thdf-Smf structure as a saturable absorber’, Opt. Commun., 2017, 389, pp. 2934.
    25. 25)
      • 36. Kim, S., Ryu, S., Choi, J., et al: ‘Characterization and luminescence properties of Alq3 films grown by ionized-cluster-beam deposition, neutral-cluster-beam deposition and thermal evaporation’, Thin Solid Films, 2001, 398, pp. 7881.
    26. 26)
      • 12. Chen, Y.-C., Raravikar, N.R., Schadler, L.S., et al: ‘Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 Mm’, Appl. Phys. Lett., 2002, 81, (6), pp. 975977.
    27. 27)
      • 18. Ahmed, M.H.M., Al-Masoodi, A.H.H., Latiff, A.A., et al: ‘Mechanically exfoliated 2d nanomaterials as saturable absorber for Q-switched erbium doped fiber laser’, Indian J. Phys., 2017, 91, (10), pp. 12591264.
    28. 28)
      • 67. Li, H., Xia, H., Lan, C., et al: ‘Passively Q-switched erbium-doped fiber laser based on few-layer Mos2 saturable absorber’, IEEE Photonics Technol. Lett., 2015, 27, (1), pp. 6972.
    29. 29)
      • 58. Ahmad, H., Samion, M.Z., Muhamad, A., et al: ‘Tunable 2.0 µ M Q-switched fiber laser using a silver nanoparticle based saturable absorber’, Laser Phys., 2017, 27, (6), p. 065110.
    30. 30)
      • 9. Liu, J., Xu, J., Wang, P.: ‘Graphene-based passively Q-switched 2 Mm thulium-doped fiber laser’, Opt. Commun., 2012, 285, (24), pp. 53195322.
    31. 31)
      • 6. Bao, Q., Zhang, H., Wang, Y., et al: ‘Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers’, Adv. Funct. Mater., 2009, 19, (19), pp. 30773083.
    32. 32)
      • 10. Saraceno, C.J., Schriber, C., Mangold, M., et al: ‘Sesams for high-power oscillators: design guidelines and damage thresholds’, IEEE J. Sel. Top. Quantum Electron., 2012, 18, (1), pp. 2941.
    33. 33)
      • 33. Curioni, A., Andreoni, W.: ‘Metal − Alq3 complexes: the nature of the chemical bonding’, J. Am. Chem. Soc., 1999, 121, (36), pp. 82168220.
    34. 34)
      • 53. Abdullah, O.G., Aziz, S.B., Omer, K.M., et al: ‘Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite’, J. Mater. Sci., Mater. Electron., 2015, 26, (7), pp. 53035309.
    35. 35)
      • 43. Choi, J., Harcup, J., Yee, A.F., et al: ‘Organic/inorganic hybrid composites from cubic silsesquioxanes’, J. Am. Chem. Soc., 2001, 123, (46), pp. 1142011430.
    36. 36)
      • 66. Dong, B., Hao, J., Hu, J., et al: ‘Short linear-cavity Q-switched fiber laser with a compact short carbon nanotube based saturable absorber’, Opt. Fiber Technol., 2011, 17, (2), pp. 105107.
    37. 37)
      • 68. Wu, M., Chen, Y., Zhang, H., et al: ‘Nanosecond Q-switched erbium-doped fiber laser with wide pulse-repetition-rate range based on topological insulator’, IEEE J. Quantum Electron., 2014, 50, (6), pp. 393396.
    38. 38)
      • 38. Chen, X.: ‘Preparation and property of Tio 2 nanoparticle dispersed polyvinyl alcohol composite materials’, J. Mater. Sci. Lett., 2002, 21, (21), pp. 16371639.
    39. 39)
      • 19. Zhang, M., Howe, R.C., Woodward, R.I., et al: ‘Solution processed Mos 2-Pva composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er: fiber laser’, Nano Res., 2015, 8, (5), pp. 15221534.
    40. 40)
      • 37. Mao, D., Jiang, B., Gan, X., et al: ‘Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers’, Photonics Res., 2015, 3, (2), pp. A43A46.
    41. 41)
      • 28. Peumans, P., Uchida, S., Forrest, S.R.: ‘Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films’, Nature, 2003, 425, p. 158.
    42. 42)
      • 44. Wang, T., Turhan, M., Gunasekaran, S.: ‘Selected properties of Ph-sensitive, biodegradable chitosan–poly (vinyl alcohol) hydrogel’, Polym. Int., 2004, 53, (7), pp. 911918.
    43. 43)
      • 46. Correia, F.C., Santos, T.C., Garcia, J.R., et al: ‘Synthesis and characterization of a new semiconductor oligomer having quinoline and fluorene units’, J. Braz. Chem. Soc., 2015, 26, (1), pp. 8491.
    44. 44)
      • 39. Wu, K., Zhang, X., Wang, J., et al: ‘Ws 2 as a saturable absorber for ultrafast photonic applications of mode-locked and Q-switched lasers’, Opt. Express, 2015, 23, (9), pp. 1145311461.
    45. 45)
      • 16. Sotor, J., Sobon, G., Grodecki, K., et al: ‘Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2Te3 topological insulator’, Appl. Phys. Lett., 2014, 104, (25), p. 251112.
    46. 46)
      • 70. Herda, R., Kivistö, S., Okhotnikov, O.G.: ‘Dynamic gain induced pulse shortening in Q-switched lasers’, Opt. Lett., 2008, 33, (9), pp. 10111013.
    47. 47)
      • 52. Divayana, Y., Sun, X., Chen, B., et al: ‘Bandgap engineering in Alq3-and Npb-based organic light-emitting diodes for efficient green, blue and white emission’, Solid-State Electron., 2007, 51, (11–12), pp. 16181623.
    48. 48)
      • 59. Wang, Q., Chen, Y., Jiang, G., et al: ‘Drop-casted self-assembled topological insulator membrane as an effective saturable absorber for ultrafast laser photonics’, IEEE Photonics J., 2015, 7, (2), pp. 111.
    49. 49)
      • 64. Wei, L., Zhou, D., Fan, H.Y., et al: ‘Graphene-based Q-switched erbium-doped fiber laser with wide pulse-repetition-rate range’, IEEE Photonics Technol. Lett., 2012, 24, (4), pp. 309311.
    50. 50)
      • 3. Popa, D., Sun, Z., Hasan, T., et al: ‘Graphene Q-switched, tunable fiber laser’, Appl. Phys. Lett., 2011, 98, (7), p. 073106.
    51. 51)
      • 25. Williams, D.J.: ‘Nonlinear optical properties of organic and polymeric materials’. ACS Symp. Series 233, Kansas City, Missouri, 1983.
    52. 52)
      • 50. Aziz, S.B., Rasheed, M.A., Saeed, S.R., et al: ‘Synthesis and characterization of Cds nanoparticles grown in a polymer solution using in-situ chemical reduction technique’, Int. J. Electrochem. Sci., 2017, 12, pp. 32633274.
    53. 53)
      • 22. Nel, A., Xia, T., Mädler, L., et al: ‘Toxic potential of materials at the nanolevel’, Science, 2006, 311, (5761), pp. 622627.
    54. 54)
      • 26. Khazaeinezhad, R., Hosseinzadeh Kassani, S., Paulson, B., et al: ‘Ultrafast nonlinear optical properties of thin-solid DNA film and their application as a saturable absorber in femtosecond mode-locked fiber laser’, Sci. Rep., 2017, 7, p. 41480.
    55. 55)
      • 20. Liu, H., Luo, A.-P., Wang, F.-Z., et al: ‘Femtosecond pulse erbium-doped fiber laser by a few-layer Mos 2 saturable absorber’, Opt. Lett., 2014, 39, (15), pp. 45914594.
    56. 56)
      • 4. Siniaeva, M.L., Siniavsky, M.N., Pashinin, V.P., et al: ‘Laser ablation of dental materials using a microsecond Nd:Yag laser’, Laser Phys., 2009, 19, (5), pp. 10561060.
    57. 57)
      • 11. Lin, D., Xia, K., Li, R., et al: ‘Radially polarized and passively Q-switched fiber laser’, Opt. Lett., 2010, 35, (21), pp. 35743576.
    58. 58)
      • 49. Elashmawi, I., Hakeem, N., Selim, M.S.: ‘Optimization and spectroscopic studies of Cds/poly (vinyl alcohol) nanocomposites’, Mater. Chem. Phys., 2009, 115, (1), pp. 132135.
    59. 59)
      • 8. Liu, H.H., Chow, K.K., Yamashita, S., et al: ‘Carbon-nanotube-based passively Q-switched fiber laser for high energy pulse generation’, Opt. Laser Technol., 2013, 45, pp. 713716.
    60. 60)
      • 48. Laukamp, C., Salama, W., González-Álvarez, I.: ‘Proximal and remote spectroscopic characterisation of regolith in the Albany–Fraser Orogen (Western Australia)’, Ore Geol. Rev., 2016, 73, pp. 540554.
    61. 61)
      • 56. He, X., Zhang, H., Lin, W., et al: ‘PVP-Assisted solvothermal synthesis of high-yielded Bi 2 Te 3 hexagonal nanoplates: application in passively Q-switched fiber laser’, Sci. Rep., 2015, 5, p. 15868.
    62. 62)
      • 60. Chen, Y., Zhao, C., Chen, S., et al: ‘Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser’, IEEE J. Sel. Top. Quantum Electron., 2014, 20, (5), p. 0900508.
    63. 63)
      • 63. Zuikafly, S.N.F., Khalifa, A., Ahmad, F., et al: ‘Conductive graphene as passive saturable absorber with high instantaneous peak power and pulse energy in Q-switched regime’, Results Phys., 2018, 9, pp. 371375.
    64. 64)
      • 54. Zhen, T., Kan, W., Lingchen, K., et al: ‘Mode-locked thulium fiber laser with Mos 2’, Laser Phys. Lett., 2015, 12, (6), p. 065104.
    65. 65)
      • 31. Choi, H.-K., Jin, S.-H., Park, J.-W., et al: ‘Electro-optical and electrochemical properties of poly(2-ethynylthiophene)’, J. Ind. Eng. Chem., 2012, 18, (2), pp. 814817.
    66. 66)
      • 2. Paschotta, R., Häring, R., Gini, E., et al: ‘Passively Q-switched 0.1-Mj fiber laser system at 1.53’, Opt. Lett., 1999, 24, (6), pp. 388390.
    67. 67)
      • 5. Svelto, O., Hanna, D.C.: ‘Principles of lasers’ (Springer US, USA, 2013).
    68. 68)
      • 35. Fukuda, T., Wei, B., Ichikawa, M., et al: ‘Enhanced modulation speed of tris (8-hydroxyquinoline) aluminum-based organic light source with low-work-function electrode’, Jpn. J. Appl. Phys., 2007, 46, (12R), p. 7880.
    69. 69)
      • 1. Chen, S.Q., Chen, Y., Wu, M., et al: ‘Stable Q-switched erbium-doped fiber laser based on topological insulator covered microfiber’, IEEE Photonics Technol. Lett., 2014, 26, (10), pp. 987990.
    70. 70)
      • 45. Andrade, G.I., Barbosa-Stancioli, E.F., Mansur, A.A.P., et al: ‘Small-angle X-ray scattering and FTIR characterization of nanostructured poly (vinyl alcohol)/silicate hybrids for immunoassay applications’, J. Mater. Sci., 2008, 43, (2), pp. 450463.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5149
Loading

Related content

content/journals/10.1049/iet-opt.2018.5149
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address