access icon free High coupling efficiency 2D metasurface integrated with strip waveguide in SOI for mid-IR wavelengths

Two-dimensional (2D) metasurface integrated with strip waveguide in silicon-on-insulator (SOI) has been designed to achieve high coupling efficiency for 3.8 μm wavelength. The optimisation in period and radius has been achieved using 3D finite-difference time-domain (FDTD). The calculated coupling efficiency in the in-plane waveguide for the out-of-plane surface illumination is over 90% with a bandwidth of 1 μm. The design is consistent with the available lithography using 400 nm thick SOI for mid-IR applications. Finally, monolithic integration can be achieved using standard multi-project wafer run.

Inspec keywords: finite difference time-domain analysis; optical couplers; elemental semiconductors; optical fabrication; integrated optoelectronics; light propagation; optical arrays; optical waveguides; silicon-on-insulator; optical dispersion; silicon; integrated optics

Other keywords: Si; out-of-plane surface illumination; tandard multiproject wafer run; mid-IR wavelengths; calculated coupling efficiency; SOI; in-plane waveguide; size 400.0 nm; size 1.0 mum; monolithic integration; silicon-on-insulator; mid-IR applications; strip waveguide; high coupling efficiency; 3D FDTD; wavelength 3.8 mum

Subjects: Optical materials; Integrated optics; Optical waveguides; Optical fabrication, surface grinding; Optical waveguides and couplers; Integrated optoelectronics; Optical propagation, transmission and absorption; Integrated optics; Fibre couplers and connectors; Numerical approximation and analysis; Light propagation

References

    1. 1)
      • 21. Guo, Y., Pu, M., Li, X., et al: ‘Ultra-broadband spin-controlled directional router based on single optical catenary integrated on silicon waveguide’, Appl. Phys. Express, 2018, 11, (9), p. 092202.
    2. 2)
      • 19. Mashanovich, G.Z., Gardes, F.Y., Thomson, D.J., et al: ‘Silicon photonic waveguides and devices for near- and mid-IR applications’, IEEE J. Sel. Top. Quantum Electron., 2015, 21, (4), pp. 407418.
    3. 3)
      • 3. Huang, M.C.Y., Zhou, Y., Chang-Hasnain, C.J.: ‘A nanoelectromechanical tunable laser’, Nat. Photonics, 2008, 2, (3), pp. 180184.
    4. 4)
      • 10. Zhu, L., Karagodsky, V., Chang-Hasnain, C.: ‘Novel high efficiency vertical to in-plane optical coupler’. Proc. SPIE, San Francisco, USA, 2012, vol. 8270, p. 82700L.
    5. 5)
      • 22. Guo, Y., Pu, M., Li, X., et al: ‘Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction’, IEEE J. Sel. Top. Quantum Electron., 2018, 24, (6), pp. 17.
    6. 6)
      • 18. Qiao, P., Zhu, L., Chang-Hasnain, C.J.: ‘High-efficiency aperiodic two-dimensional high-contrast-grating hologram’. Proc. SPIE, San Francisco, USA, 2016, vol. 9757, p. 975708.
    7. 7)
      • 20. Zhu, L., Yang, W., Chang-Hasnain, C.: ‘Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber’, Opt. Express, 2017, 25, (15), p. 18462.
    8. 8)
      • 23. Roelkens, G., Abassi, A., Cardile, P., et al: ‘III-V-on-silicon photonic devices for optical communication and sensing’, Photonics., 2015, 2, (3), pp. 9691004.
    9. 9)
      • 14. Yoo, B.W., Megens, M., Chan, T., et al: ‘Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering’, Opt. Express, 2013, 21, (10), p. 12238.
    10. 10)
      • 12. Fattal, D., Li, J., Peng, Z., et al: ‘Flat dielectric grating reflectors with focusing abilities’, Nat. Photonics, 2010, 4, (7), pp. 466470.
    11. 11)
      • 13. Ferrara, J., Yang, W., Zhu, L., et al: ‘Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate’, Opt. Express, 2015, 23, (3), p. 2512.
    12. 12)
      • 5. Haglund, E., Gustavsson, J.S., Bengtsson, J., et al: ‘Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings’, Opt. Express, 2016, 24, (3), p. 1999.
    13. 13)
      • 11. Lu, F., Sedgwick, F.G., Karagodsky, V., et al: ‘Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings’, Opt. Express, 2010, 18, (12), p. 12606.
    14. 14)
      • 15. Yang, W., Sun, T., Rao, Y., et al: ‘High speed optical phased array using high contrast grating all-pass filters’, Opt. Express, 2014, 22, (17), p. 20038.
    15. 15)
      • 25. Younis, U., Luo, X., Dong, B., et al: ‘Towards low-loss waveguides in SOI and Ge-on-SOI for mid-IR sensing’, J. Phys. Commun., 2018, 2, (4), pp. 045029, https://doi.org/10.1088/2399-6528/aaba24.
    16. 16)
      • 16. Zhu, L., Kapraun, J., Ferrara, J., et al: ‘Flexible photonic metastructures for tunable coloration’, Optica, 2015, 2, (3), p. 255.
    17. 17)
      • 4. Chung, I.S., Iakovlev, V., Sirbu, A., et al: ‘Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL’, IEEE J. Quantum Electron., 2010, 46, (9), pp. 12451253.
    18. 18)
      • 24. Bilal, A., Younis, U., Ang, K.W.: ‘Towards high coupling efficiency integrated 2D meta-surface waveguide coupler for mid-IR wavelengths’. Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), Zurich, Switzerland, 2018, p. JTu5A.4.
    19. 19)
      • 2. Qiao, P., Yang, W., Chang-Hasnain, C.J.: ‘Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals’, Adv. Opt. Photonics., 2018, 10, (1), p. 180.
    20. 20)
      • 27. Hattasan, N., Kuyken, B., Leo, F., et al: ‘High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared’, IEEE Photonics Technol. Lett., 2012, 24, (17), pp. 15361538.
    21. 21)
      • 17. Arbabi, A., Horie, Y., Bagheri, M., et al: ‘Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission’, Nat. Nanotechnol., 2015, 10, (11), pp. 937943.
    22. 22)
      • 26. Alonso-Ramos, C., Nedeljkovic, M., Benedikovic, D., et al: ‘Germanium-on-silicon mid-infrared grating couplers with low-reflectivity inverse taper excitation’, Opt. Lett., 2016, 41, (18), pp. 43244327.
    23. 23)
      • 1. Mateus, C.F.R., Huang, M.C.Y., Chen, L., et al: ‘Broad-band mirror (1.12–1.62 μm) using a subwavelength grating’, IEEE Photonics Technol. Lett., 2004, 16, (7), pp. 16761678.
    24. 24)
      • 7. Sun, T., Kan, S., Marriott, G., et al: ‘High-contrast grating resonators for label-free detection of disease biomarkers’, Sci. Rep., 2016, 6, (1), p. 107.
    25. 25)
      • 28. Kang, J., Cheng, Z., Zhou, W., et al: ‘Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides’, Opt. Lett., 2017, 42, (11), pp. 20942097.
    26. 26)
      • 6. Qiao, P., Li, K., Cook, K.T., et al: ‘MEMS-tunable VCSELs using 2D high-contrast gratings’, Opt. Lett., 2017, 42, (4), p. 823.
    27. 27)
      • 9. Tran, T., Karagodsky, V., Rao, Y., et al: ‘Surface-normal second harmonic emission from AlGaAs high-contrast gratings’, Appl. Phys. Lett., 2013, 102, (2), p. 021102.
    28. 28)
      • 8. Yang, W., Ferrara, J., Grutter, K., et al: ‘Low loss hollow-core waveguide on a silicon substrate’, Nanophotonics., 2012, 1, (1), p. 23.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5146
Loading

Related content

content/journals/10.1049/iet-opt.2018.5146
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading