access icon free Design of a wideband terahertz absorber composed of graphene patches

Here, the design of a wideband absorber operating at terahertz frequencies is presented. The design is based on an analytical circuit model of graphene arrays of rectangular patches obtained from the presented circuit model of graphene arrays of disks. A recently proposed method is generalised for the design of wideband absorbers at higher frequencies. The bandwidth is increased by correct tuning of the input impedance for a structure composed of two layers of graphene arrays and a metal-backed dielectric layer. Using two-layer graphene arrays, the authors decrease the slope of the imaginary part of the input impedance to increase the bandwidth. The designed absorber works at a frequency of 4THz and has a higher bandwidth of about 30% with respect to the predicted bandwidth by the recently proposed method. The structure is analysed by a transmission-line formulation method. Consequently, it is demonstrated that the 90% -absorption bandwidth can be increased up to 80% of the central frequency.

Inspec keywords: dielectric materials; graphene; electromagnetic wave absorption; equivalent circuits; transmission lines; terahertz materials

Other keywords: graphene patches; metal-backed dielectric layer; two-layer graphene arrays; rectangular patches; terahertz frequencies; wideband terahertz absorber; central frequency; analytical circuit model; input impedance tuning; transmission-line formulation method; frequency 4.0 THz; wideband absorber design

Subjects: Optical materials; Microwave materials and structures; Fullerenes, carbon nanotubes, and related materials (engineering materials science); Dielectric materials and properties

References

    1. 1)
      • 8. Huang, X., Zhang, X., Hu, Z., et al: ‘Design of broadband and tunable terahertz absorbers based on graphene metasurface: equivalent circuit model approach’, IET Microw., Antennas Propag., 2015, 9, (4), pp. 307312.
    2. 2)
      • 14. Su, Z., Wang, Y., Luo, X., et al: ‘A tunable thz absorber consisting of an elliptical graphene disk array’, Phys. Chem. Chem. Phys., 2018, 20, (21), pp. 1435714361.
    3. 3)
      • 3. Barzegar Parizi, S., Rejaei, B., Khavasi, A.: ‘Analytical circuit model for periodic arrays of graphene disks’, IEEE J. Quantum Electron., 2015, 51, (9), pp. 17.
    4. 4)
      • 12. Xu, B.Z., Gu, C.Q., Li, Z., et al: ‘A novel structure for tunable terahertz absorber based on graphene’, Opt. Express, 2013, 21, (20), pp. 2380323811.
    5. 5)
      • 9. Amin, M., Farhat, M., Bagci, H.: ‘An ultra-broadband multilayered graphene absorber’, Opt. Express, 2013, 21, (24), pp. 2993829948.
    6. 6)
      • 17. Ye, L., Chen, X., Cai, G., et al: ‘Electrically tunable broadband terahertz absorption with hybrid-patterned graphene metasurfaces’, Nanomaterials, 2018, 8, (8), p. 562.
    7. 7)
      • 2. Bao, Q., Loh, K.P.: ‘Graphene photonics, plasmonics, and broadband optoelectronic devices’, ACS Nano, 2012, 6, (5), pp. 36773694.
    8. 8)
      • 20. Shahabadi, M., Atakaramians, S., Hojjat, N.: ‘Transmission line formulation for the full-wave analysis of two-dimensional dielectric photonic crystals’, IEE Proc. – Sci., Meas. Technol., 2004, 151, (5), pp. 327334.
    9. 9)
      • 22. Hanson, G.W.: ‘Dyadic greens functions and guided surface waves for a surface conductivity model of graphene’, J. Appl. Phys., 2008, 103, (6), p. 064302.
    10. 10)
      • 5. Wu, L., Jia, Y., Jiang, L., et al: ‘Sensitivity improved spr biosensor based on the mos2/graphene–aluminum hybrid structure’, J. Lightwave Technol., 2017, 35, (1), pp. 8287.
    11. 11)
      • 19. Thongrattanasiri, S., Koppens, F.H.L., Garcia de Abajo, F.J.: ‘Complete optical absorption in periodically patterned graphene’, Phys. Rev. Lett., 2012, 108, p. 047401.
    12. 12)
      • 6. Wei, Z., Li, X., Yin, J., et al: ‘Active plasmonic band-stop filters based on graphene metamaterial at thz wavelengths’, Opt. Express, 2016, 24, (13), pp. 1434414351.
    13. 13)
      • 21. Khoozani, P.K., Maddahali, M., Shahabadi, M., et al: ‘Analysis of magnetically biased graphene-based periodic structures using a transmission-line formulation’, J. Opt. Soc. Am. B, 2016, 33, (12), pp. 25662576.
    14. 14)
      • 11. Khavasi, A.: ‘Design of ultra-broadband graphene absorber using circuit theory’, J. Opt. Soc. Am. B, 2015, 32, (9), pp. 19411946.
    15. 15)
      • 1. Koppens, F.H.L., Chang, D.E., Garcia de Abajo, F.J.: ‘Graphene plasmonics: a platform for strong light matter interactions’, Nano Lett., 2011, 11, (8), pp. 33703377.
    16. 16)
      • 15. Zhang, J., Tian, J., Li, L.: ‘A dual-band tunable metamaterial near-unity absorber composed of periodic cross and disk graphene arrays’, IEEE Photonics J., 2018, 10, (2), pp. 112.
    17. 17)
      • 16. Biabanifard, S., Biabanifard, M., Asgari, S., et al: ‘Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons’, Opt. Commun., 2018, 427, pp. 418425.
    18. 18)
      • 7. Fadakar, H., Borji, A., Nezhad, A.Z., et al: ‘Improved Fourier analysis of periodically patterned graphene sheets embedded in multilayered structures and its application to the design of a broadband tunable wide-angle polarizer’, IEEE J. Quantum Electron., 2017, 53, (3), pp. 18.
    19. 19)
      • 18. Ke, S., Wang, B., Huang, H., et al: ‘Plasmonic absorption enhancement in periodic cross-shaped graphene arrays’, Opt. Express, 2015, 23, (7), pp. 88888900.
    20. 20)
      • 4. Khavasi, A., Rejaei, B.: ‘Analytical modeling of graphene ribbons as optical circuit elements’, IEEE J. Quantum Electron., 2014, 50, (6), pp. 397403.
    21. 21)
      • 13. Andryieuski, A., Lavrinenko, A.V.: ‘Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach’, Opt. Express, 2013, 21, (7), pp. 91449155.
    22. 22)
      • 10. Arik, K., AbdollahRamezani, S., Khavasi, A.: ‘Polarization insensitive and broad-band terahertz absorber using graphene disks’, Plasmonics., 2017, 12, (2), pp. 393398.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5126
Loading

Related content

content/journals/10.1049/iet-opt.2018.5126
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading