access icon free Digital fronthaul link based on optimised digital radio over fibre system

The high optical bandwidth requirement in the mobile fronthaul link of the next generation cloud radio access network represents one of the major design constraints. In this study, a digital fronthaul link based on digital radio over fibre system that integrates the duobinary coding scheme with the optical single sideband (OSSB) transmission is proposed. This system reduces the spectral occupancy of the transmitted signals as well as the chromatic dispersion effects induced by fibre in both the electrical and optical domains. The OSSB signal is created by driving two cascaded optical modulators with a combination of a baseband digital signal and the Hilbert transform of that signal. The transmission performance of a digitised 16-quadrature amplitude modulation 16-QAM radio frequency signal with a bit rate of 1.25 Gb/s over a standard single mode fibre is investigated. The results show that the fronthaul transmission length can be extended by 75 and 16.6% relative to the case of transmitting the digitised signal using double sideband and single sideband (SSB) transmission formats, respectively. The power budget is improved by 10 dB compared to the SSB case with respect to the measured optical signal-to-noise ratio at 70 km fibre distance, while maintaining the EVM below the standardised values of the 3GPP.

Inspec keywords: quadrature amplitude modulation; telecommunication links; binary codes; radio-over-fibre; optical modulation; Hilbert transforms

Other keywords: OSSB transmission; optical signal-to-noise ratio; duobinary coding scheme; 16-QAM radio frequency signal; mobile fronthaul link; digitised signal; 3GPP; cloud radio access network; bit rate 1.25 Gbit/s; standard single mode fibre; OSSB signal; digitised 16-quadrature amplitude modulation; digital fronthaul link; single sideband transmission formats; baseband digital signal; optical single sideband transmission; cascaded optical modulators; fronthaul transmission length; double sideband transmission formats; transmitted signals; optimised digital radio over fibre system; high optical bandwidth requirement; distance 70.0 km; optical domains; Hilbert transform; electrical domains

Subjects: Optical communication; Microwave photonics; Integral transforms; Codes

References

    1. 1)
      • 23. Leon, W., Couch, I.I.: ‘Baseband pulse and digital signaling’, in Gilfillan, A.: (Ed.) ‘Digital and analog communication systems’ (Pearson Education, New Jersey, USA, 2013, 8th edn.), pp. 164184.
    2. 2)
      • 1. Checko, A., Christiansen, H.L., Yan, Y., et al: ‘Cloud RAN for mobile networks – a technology overview’, IEEE Commun. Surv. Tutorials, 2015, 17, (1), pp. 405426.
    3. 3)
      • 2. ‘China Mobile Research Institute C-RAN: The Road Towards Green RAN’. Available at http://labs.chinamobile.com/cran/wp-content/uploads/CRAN_white_paper_v2_5_EN.pdf, accessed October 2011.
    4. 4)
      • 9. Isiaka, A.A., António, L.T., Monteiro, P.P.: ‘Toward an efficient C-RAN optical fronthaul for the future networks: a tutorial on technologies, requirements, challenges, and solutions’, IEEE Commun. Surv. Tutorials, 2018, 20, (1), pp. 708769.
    5. 5)
      • 33. Krishna, V.S.R., Singhal, R.: ‘Dual carrier multiplexed M-QAM signals modulated optical SSB transmission over fiber’. Thirteenth Int. Conf. on Wireless and Optical Communications Networks (WOCN), Hyderabad, 2016, pp. 15.
    6. 6)
      • 25. Kaiser, W., Wuth, T., Wichers, M., et al: ‘Reduced complexity optical duobinary 10-Gb/s transmitter setup resulting in an increased transmission distance’, IEEE Photonics Technol. Lett., 2001, 13, (8), pp. 884886.
    7. 7)
      • 16. Olmos, J.J.V., Suhr, L.F., Li, B., et al: ‘Five-level polybinary signaling for 10 Gbps data transmission systems’, Opt. Express, 2013, 21, (17), pp. 2041720422.
    8. 8)
      • 6. ‘CPRI Specification V7.0’. Available at http://www.cpri.info/downloads/CPRI_v_7_0_2015–10-09.pdf, accessed 2015.
    9. 9)
      • 19. Olmos, J.J.V., Monroy, I.T., Madsen, P., et al: ‘Challenges in polybinary modulation for bandwidth limited optical links’, J. Laser Opt. Photonics, 2016, 3, (1), pp. 15.
    10. 10)
      • 4. Nirmalathas, A., Gamage, P.A., Lim, C., et al: ‘Digitized RF transmission over fiber’, IEEE Microw. Mag., 2009, 10, (4), pp. 7581.
    11. 11)
      • 26. Sieben, M., Conradi, J., Dodds, D.E.: ‘‘Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation’, J. Lightw. Technol., 1999, 17, (10), pp. 17421749.
    12. 12)
      • 29. Kaminow, I.P., Li, T.: ‘Bandwidth-efficient modulation formats for digital fiber transmission systems’, in Kaminow, I., Li, T., Willner, A.: (Eds.) ‘Optical fiber telecommunication IV B systems and impairments’ (Academic Press, USA, 2002), pp. 862895.
    13. 13)
      • 31. Tranter, W., Shanmugan, K., Rappaport, T., et al: ‘Sampling and quantizing’, in Rappaport, T.S. (Ed.) ‘Principles of communication systems simulation with wireless applications’ (Prentice Hall, USA, 2003), pp. 5590.
    14. 14)
      • 24. Wei, J.L., Grobe, K., Wagner, C., et al: ‘40 Gb/s lane rate NG-PON using electrical/optical duobinary, PAM-4 and low complex equalizations’. Optical Fiber Communications Conf. and Exhibition (OFC), Anaheim, CA, 2016, pp. 13.
    15. 15)
      • 21. Builting, J.: ‘Introduction to duobinary encoding and decoding’, Elektor Electron., 1990, pp. 5052.
    16. 16)
      • 13. Oliveira, R.S., Frances, C.R.L., Costa, J.C.W.A., et al: ‘Analysis of the cost-effective digital radio over fiber system in the NG-PON2 context’. 16th Int. Telecommunications Network Strategy and Planning Symp. (Networks), Funchal, 2014, pp. 16.
    17. 17)
      • 22. Diniz, P.S.R., Silva, E.A.B., Netto, S.L.: ‘Digital signal processing: system analysis and design’ (Cambridge University Press, USA, 2010, 2nd edn.).
    18. 18)
      • 5. Saadani, A., Tabach, M.E., Pizzinat, A., et al: ‘Digital radio over fiber for LTE-advanced: opportunities and challenges’. 17th Int. Conf. on Optical Networking Design and Modeling (ONDM), Brest, 2013, pp. 194199.
    19. 19)
      • 14. Abdollahi, S.R., Al-Raweshidy, H.S., Owens, T.J.: ‘Data regeneration for an all-photonic digital radio over fibre’, IET Optoelectron., 2014, 8, (6), pp. 256263.
    20. 20)
      • 11. Hinrichs, M., Rosal, L.F.D., Kottke, C., et al: ‘Analog vs. Next-generation digital fronthaul: how to minimize optical bandwidth utilization’. 2017 Int. Conf. on Optical Network Design and Modeling (ONDM), Budapest, 2017, pp. 16.
    21. 21)
      • 10. Novak, D., Waterhouse, R.B., Nirmalathas, A., et al: ‘Radio-over-fiber technologies for emerging wireless systems’, IEEE J. Quantum Electron., 2016, 52, (1), pp. 111.
    22. 22)
      • 32. Yang, Y., Nermalathas, A., Lin, C.: ‘Digitized RF-over-fiber as a cost effective and energy-efficient backhaul option for wireless communication’, Annales. Des. Telecommun., 2013, 68, (1–2), pp. 2339.
    23. 23)
      • 12. Kim, S.H., Chung, H.S., Kim, S.M.: ‘Experimental demonstration of CPRI data compression based on partial bit sampling for mobile front-haul link in C-RAN’. 2016 Optical Fiber Communications Conf. and Exhibition (OFC), Anaheim, CA, 2016, pp. 13.
    24. 24)
      • 34. Seimetz, M.: ‘System simulation aspects’, in Rhodes, W.T., Adibi, A., Asakura, T., et al: (Eds.) ‘High-order modulation for optical fiber transmission’ (Springer, Germany, 2009), pp. 127131.
    25. 25)
      • 18. Niknamfar, M., Shadaram, M.: ‘OSSB and ODSB configurations for RoF transmission over DWDM link’. 15th Int. Conf. on Transparent Optical Networks (ICTON), Cartagena, 2013, pp. 14.
    26. 26)
      • 15. Wang, J., Yu, Z., Ying, K., et al: ‘Digital mobile fronthaul based on delta-Sigma modulation for 32 LTE carrier aggregation and FBMC signals’, J. Opt. Commun. Netw., 2017, 9, (2), pp. A233A244.
    27. 27)
      • 8. Mitchell, J.E.: ‘Integrated wireless backhaul over optical access networks’, J. Lightw. Technol., 2014, 32, (20), pp. 33733382.
    28. 28)
      • 17. Suhr, L.F., Madsen, P., Monroy, I.T., et al: ‘Analog based duobinary-4-PAM for electrical bandwidth limited optical fiber links’, Opt. Appl., 2016, XLVI, (1), pp. 7178.
    29. 29)
      • 27. Oppenheim, A.A., Schafer, R.W., Buck, J.R.: ‘Discrete hilbert transforms’, in Robbins, T.: (Ed.) ‘Discrete-time signal processing’ (Prentice-Hall, USA, 1999, 2nd edn.), pp. 775799.
    30. 30)
      • 20. VPI Photonics. VPITransmissionMaker Optical Systems 9.5’, Tech. Rep., 2015.
    31. 31)
      • 28. Oppenheim, A.A., Schafer, R.W., Buck, J.R.: ‘Filter design techniques’, in Robbins, T.: (Ed.) ‘Discrete-time signal processing’ (Prentice-Hall, USA, 1999, 2nd edn.), pp. 465478.
    32. 32)
      • 7. ‘OBSAI Specification V4.2’. Available at http://www.obsai.com/specs/RP3_Specification_V4.2.pdf, accessed 2010.
    33. 33)
      • 30. Bagad, V.S., Dhotre, I.A.: ‘Signal, noise, modulation and demodulation’, in ‘Data communication systems’ (Technical Publication, Pune, 2009, 1st edn.), pp. (2-2)(2-28).
    34. 34)
      • 3. Haddad, A., Gagnaire, M.: ‘Radio-over-Fiber (RoF) for mobile backhauling: A technical and economic comparison between analog and digitized RoF’. Int. Conf. on Optical Network Design and Modelling, Stockholm, 2014, pp. 132137.
    35. 35)
      • 35. ‘LTE, 3GPP TS 24.229V13.5.1.’. Available at http://www.3gpp.org/release-13, accessed March 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5100
Loading

Related content

content/journals/10.1049/iet-opt.2018.5100
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading