access icon free Security improved duobinary optical communication scheme through bio-inspired chaos masking scheme

In optical fibre communication system, improved modulation schemes have been proposed to increase capability and high bit rate transmission. One such technique is optical duobinary modulation, which can able to broadcast high-speed optical signals over bandwidth-limited channels. The conventional modulation schemes employ the non-return-to-zero modulation and return-to-zero modulation technique. These schemes decrease spectrum width and increase the dispersion tolerance. However, the effect of inter-symbol inference presents between the pulses. These techniques give a reduced performance for high bit rate transmissions and transmission over long distances. Hence in this work, the implementation of duobinary modulation improves the performance of optical communication along with the provision of enhanced security through bio-inspired chaos masking scheme. The bio-inspired chaos-masking scheme generates the security key using the spider security pattern generator to provide improved security. The parameters of the proposed technique are analysed for different transmission rates and the performance improvement is validated.

Inspec keywords: optical fibre dispersion; optical filters; optical transmitters; modulation; optical fibre communication; intersymbol interference; optical modulation; optical communication

Other keywords: nonreturn-to-zero modulation; bio-inspired chaos masking scheme; high bit rate transmission; different transmission rates; bio-inspired chaos-masking scheme; optical duobinary modulation; conventional modulation schemes; schemes decrease spectrum width; duobinary optical communication scheme; high-speed optical signals; performance improvement; optical fibre communication system; improved security; return-to-zero modulation technique; improved modulation schemes

Subjects: Modulation and coding methods; Optical propagation, dispersion and attenuation in fibres; Fibre optics; Optical coatings and filters; Other topics in statistics; Radio links and equipment; Optical communication equipment; Electromagnetic compatibility and interference

References

    1. 1)
      • 27. Kaiser, W., Wuth, T., Wichers, M., et al: ‘Reduced complexity optical duobinary 10-Gb/s transmitter setup resulting in an increased transmission distance’, IEEE Photonics Technol. Lett., 2001, 13, (8), pp. 884886.
    2. 2)
      • 21. Priyadarshi, S., Hong, Y., Pierce, I., et al: ‘Experimental investigations of time-delay signature concealment in chaotic external cavity VCSELs subject to variable optical polarization angle of feedback’, IEEE J. Sel. Top. Quantum Electron., 2013, 19, (4), pp. 17007071700707.
    3. 3)
      • 18. Shore, A., Sciamanna, M.: ‘Physics and applications of laser diode chaos’. 2015.
    4. 4)
      • 25. Mahmud, R.R., Khan, M.A.G., Razzak, S.M.A.: ‘Design of a duobinary encoder and decoder circuits for communication systems’. Int. Conf. on Electrical & Computer Engineering (ICECE 2010), December, 2010, pp. 4952.
    5. 5)
      • 20. Ali, S.Z., Islam, M.K., Zafrullah, M.: ‘Generation of higher degree chaos by controlling harmonics of the modulating signal in EDFRL’, Optik, 2011, 122, (21), pp. 19031909.
    6. 6)
      • 6. Sharan, L., Shanbhag, A.G., Chaubey, V.K.: ‘Design and simulation of modified duobinary modulated 40 Gbps 32 channel DWDM optical link for improved non-linear performance’, Cogent Eng., 2016, 3, (1), p. 1256562.
    7. 7)
      • 5. Hodzic, A., Konrad, B., Petermann, K.: ‘Alternative modulation formats in N/spl times/40 Gb/s WDM standard fiber RZ-transmission systems’, J. Lightw. Technol., 2002, 20, (4), pp. 598607.
    8. 8)
      • 17. Ali, S.Z., Islam, M.K., Zafrullah, M.: ‘Effect of parametric variation on generation and enhancement of chaos in erbium-doped fiber-ring lasers’, Opt. Eng., 2010, 49, (10), p. 105002.
    9. 9)
      • 10. Sharan, L., Chaubey, V.K.: ‘Design and simulation of long-haul 32 × 40 Gb/s duobinary DWDM link in the presence of non-linearity with under-compensated dispersion’. 2012 IEEE 3rd Int. Conf. on Photonics, Rajasthan, India, October 2012, pp. 210214.
    10. 10)
      • 32. Zheng, L., Behrooz, M., Li, R., et al: ‘Performance of a bio-inspired spider web’, Act. Passive Smart Struct. Integr. Syst. Int. Soc. Opt. Photonics, 2014, 9057, p. 90570I.
    11. 11)
      • 30. Annovazzi-Lodi, V., Benedetti, M., Merlo, S., et al: ‘Optical chaos masking of video signals’, IEEE Photonics Technol. Lett., 2005, 17, (9), pp. 19951997.
    12. 12)
      • 2. Birk, M., Mikkelsen, B.: ‘40 gbit/s upgrades on existing 10 Gbit/s transport infrastructure’, Opt. Transm. Sys. Equip. WDM Netw. IV, Int. Soc. Opti. Photonics, 2005, 6012, p. 60120D.
    13. 13)
      • 3. Al-Mamun, S., Islam, M.S.: ‘Effect of chromatic dispersion on four-wave mixing in optical WDM transmission system’. IEEE 6th Int. Conf. on Industrial and Information Systems, Srilanka, August 2011, pp. 425428.
    14. 14)
      • 11. Sheetal, A., Sharma, A.K., Kaler, R.S.: ‘Simulation of high capacity 40 Gb/s long haul DWDM system using different modulation formats and dispersion compensation schemes in the presence of Kerr's effect’, Optik, 2010, 121, (8), pp. 739749.
    15. 15)
      • 19. Nguimdo, R.M., Verschaffelt, G., Danckaert, J., et al: ‘Loss of time-delay signature in chaotic semiconductor ring lasers’, Opt. Lett., 2012, 37, (13), pp. 25412543.
    16. 16)
      • 1. Sharan, L., Shanbhag, A.G., Chaubey, V.K.: ‘Design and simulation of modified duobinary modulated 40 Gbps 32 channel DWDM optical link for improved non-linear performance’, Cogent Eng., 2016, 3, (1), p. 1256562.
    17. 17)
      • 12. Sikdar, D., Chaubey, S., Tiwari, V., et al: ‘Simulation and performance analysis of duobinary 40 Gbps optical link’, J. Mod. Opt., 2012, 59, (10), pp. 903911.
    18. 18)
      • 29. Argyris, A., Grivas, E., Hamacher, M., et al: ‘Chaos-on-a-chip secures data transmission in optical fiber links’, Opt. Express, 2010, 18, (5), pp. 51885198.
    19. 19)
      • 8. Sharan, L., Chaubey, V.K.: ‘Design and simulation of CSRZ modulated 40 Gbps DWDM system in presence of kerr non linearity’. 2012 Ninth Int. Conf. on Wireless and Optical Communications Networks (WOCN), Indore, India, September 2012, pp. 15.
    20. 20)
      • 22. Zhang, W.L., Li, S.W., Ma, R., et al: ‘Random distributed feedback fiber laser based on combination of Er-doped fiber and single-mode fiber’, IEEE J. Sel. Top. Quantum Electron., 2014, 21, (1), pp. 4449.
    21. 21)
      • 28. Šalík, P., Čertík, F., Roka, R.: ‘Duobinary modulation format in optical communication systems’, Adv. Signal Process., 2015, 3, (1), pp. 17.
    22. 22)
      • 7. Hoshida, T., Vassilieva, O., Yamada, K., et al: ‘Optimal 40 Gb/s modulation formats for spectrally efficient long-haul DWDM systems’, J. Lightw. Technol., 2002, 20, (12), pp. 19891996.
    23. 23)
      • 9. Shtyrina, O.G.V., Fedoruk, M.P., Turitsyn, S.K.: ‘Study of new modulation data-transmission formats for dispersion-controlled high-bit-rate fibreoptic communication lines’, Quantum Electron., 2007, 37, (9), p. 885.
    24. 24)
      • 4. Hayee, M.I., Willner, A.E.: ‘NRZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems’, IEEE Photonics Technol. Lett., 1999, 11, (8), pp. 991993.
    25. 25)
      • 36. Krink, T., Vollrath, F.: ‘Analysing spider web-building behaviour with rule-based simulations and genetic algorithms’, J. Theor. Biol., 1997, 185, (3), pp. 321331.
    26. 26)
      • 15. Kanakidis, D., Argyris, A., Syvridis, D.: ‘Performance characterization of high-bit-rate optical chaotic communication systems in a back-to-back configuration’, J. Lightw. Technol., 2003, 21, (3), p. 750.
    27. 27)
      • 24. Šalík, P.: ‘Digital modulation formats in optical transmission medium’. ELOSYS 2014 – 20th Conf., Trenčín (Slovak), 2014, pp. 4347.
    28. 28)
      • 35. Lu, R.: ‘Fast methods for designing circulant network topology with high connectivity and survivability’, J. Cloud Comput., 2016, 5, (1), p. 5.
    29. 29)
      • 14. Tan, A., Pincemin, E.: ‘Performance comparison of duobinary formats for 40-Gb/s and mixed 10/40-Gb/s long-haul WDM transmission on SSMF and LEAF fibers’, J. Lightw. Technol., 2009, 27, (4), pp. 396408.
    30. 30)
      • 33. Zschokke, S.: ‘Form and function of the orb-web’, European Arachnol., 2000, 19, p. 99.
    31. 31)
      • 34. Lin, Z.X., Peng, F., Long, M.: ‘A reversible watermarking for authenticating 2D vector graphics based on bionic spider web’, Signal Process.: Image Commun., 2017, 57, pp. 134146.
    32. 32)
      • 13. Linlin, B., Jianming, L., Li, L., et al: ‘Comprehensive assessment of new modulation techniques in 40 Gb/s optical communication systems’, J. Phys., Conf. Ser., IOP Publishing, 2011, 276, (1), p. 012054.
    33. 33)
      • 16. Qamar, F., Islam, M.K., Shah, S.Z.A., et al: ‘Secure duobinary signal transmission in optical communication networks for high performance & reliability’, IEEE Access, 2017, 5, pp. 1779517802.
    34. 34)
      • 26. Shankhar, H.: ‘Duobinray modulation for optical systems lightwave’, IEEE J. Lightw., 2006, 23, (6), pp. 411.
    35. 35)
      • 23. Callan, K.E., Illing, L., Gao, Z., et al: ‘Broadband chaos generated by an optoelectronic oscillator’, Phys. Rev. Lett., 2010, 104, (11), p. 113901.
    36. 36)
      • 31. Uchida, A.: ‘Optical communication with chaotic lasers: applications of nonlinear dynamics and synchronization’ (John Wiley & Sons, USA, 2012).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5080
Loading

Related content

content/journals/10.1049/iet-opt.2018.5080
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading