Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess InAs/GaAs quantum dot solar cells with quantum dots in the base region

In this work, the influence of quantum dot (QD) position on the performance of solar cells was studied. The presence of QDs within the base regions leads to improved open circuit voltage (V oc) from 0.73 to 0.90 V. Despite a slight reduction in short-circuit current (J sc) due to carrier collection loss, the enhancement of the V oc of QDSCs with QDs in base region is significant enough to ensure that power conversion efficiencies (η) are higher than the reference quantum dot solar cell (QDSC) of which QDs are embedded in the intrinsic region. Moreover, sample with QDs in deep base region achieved the highest η of 9.75%, an increase of 29% with regard to the reference quantum dot solar cell.

References

    1. 1)
      • 7. Okada, Y., Morioka, T., Yoshida, K.: ‘Increase in photocurrent by optical transitions via intermediate quantum states in direct-doped InAs/GaNAs strain-compensated quantum dot solar cell’, J. Appl. Phys., 2011, 109, (2), p. 024301.
    2. 2)
      • 11. Kim, D., Tang, M., Wu, J.: ‘Si-doped InAs/GaAs quantum-dot solar cell with AlAs cap layers’, IEEE J. Photovolt., 2016, 6, (4), pp. 906911.
    3. 3)
      • 3. Ross, R.T., Nozik, A.J.: ‘Efficiency of hot-carrier solar energy converters’, J. Appl. Phys., 1982, 53, (5), pp. 38133818.
    4. 4)
      • 4. Luque, A., Martí, A.: ‘Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels’, Phys. Rev. Lett., 1997, 78, (26), pp. 50145017.
    5. 5)
      • 13. Driscoll, K., Bennett, M.F., Polly, S.J.: ‘Effect of quantum dot position and background doping on the performance of quantum dot enhanced GaAs solar cells’, Appl. Phys. Lett., 2014, 104, p. 023119.
    6. 6)
      • 5. Luque, A., Martí, A., Stanley, C.: ‘Understanding intermediate-band solar cells’, Nat. Photonics, 2012, 6, (3), pp. 146152.
    7. 7)
      • 9. Hubbard, S.M.: ‘Nanostructured photovoltaics for space power’, J. Nanophotonics, 2009, 3, (1), p. 031880.
    8. 8)
      • 2. Guter, W., Schöne, J., Philipps, S.P.: ‘Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight’, Appl. Phys. Lett., 2009, 94, (22), p. 223504.
    9. 9)
      • 1. Shockley, W., Queisser, H.J.: ‘Detailed balance limit of efficiency of p–n junction solar cells’, J. Appl. Phys., 1961, 32, (3), pp. 510519.
    10. 10)
      • 6. Martí, A., Antolín, E., Stanley, C.R.: ‘Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell’, Phys. Rev. Lett., 2006, 97, (24), p. 247701.
    11. 11)
      • 14. Walker, A.W., Thériault, O., Wilkins, M.M.: ‘Positioning and doping effects on quantum dot multi-junction solar cell performance’, Prog. Photovolt., 2014, 23, (6), pp. 793799.
    12. 12)
      • 15. Liu, H., Sellers, I.R., Gutiérrez, M.: ‘Influences of the spacer layer growth temperature on multilayer InAs∕GaAs quantum dot structures’, J. Appl. Phys., 2004, 96, (4), pp. 19881992.
    13. 13)
      • 16. Tutu, F.K., Sellers, I.R., Peinado, M.G.: ‘Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer’, J. Appl. Phys., 2012, 111, (4), p. 046101.
    14. 14)
      • 12. Sablon, K.A., Little, J.W., Mitin, V.: ‘Strong enhancement of solar cell efficiency due to quantum dots with built-in charge’, Nano Lett.., 2011, 11, (6), pp. 23112317.
    15. 15)
      • 10. Lam, P., Hatch, S., Wu, J.: ‘Voltage recovery in charged InAs/GaAs quantum dot solar cells’, Nano Energy, 2014, 6, pp. 159166.
    16. 16)
      • 17. Tutu, F.K., Lam, P., Wu, J.: ‘Inas/GaAs quantum dot solar cell with an AlAs cap layer’, Appl. Phys. Lett., 2013, 102, (16), p. 163907.
    17. 17)
      • 8. Oshima, R., Takata, A., Okada, Y.: ‘Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells’, Appl. Phys. Lett., 2008, 93, (8), p. 083111.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5069
Loading

Related content

content/journals/10.1049/iet-opt.2018.5069
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address