http://iet.metastore.ingenta.com
1887

access icon openaccess InAs/GaAs quantum dot solar cells with quantum dots in the base region

Loading full text...

Full text loading...

/deliver/fulltext/iet-opt/13/5/IET-OPT.2018.5069.html;jsessionid=aedu0knr9soqa.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-opt.2018.5069&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Shockley, W., Queisser, H.J.: ‘Detailed balance limit of efficiency of p–n junction solar cells’, J. Appl. Phys., 1961, 32, (3), pp. 510519.
    2. 2)
      • 2. Guter, W., Schöne, J., Philipps, S.P.: ‘Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight’, Appl. Phys. Lett., 2009, 94, (22), p. 223504.
    3. 3)
      • 3. Ross, R.T., Nozik, A.J.: ‘Efficiency of hot-carrier solar energy converters’, J. Appl. Phys., 1982, 53, (5), pp. 38133818.
    4. 4)
      • 4. Luque, A., Martí, A.: ‘Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels’, Phys. Rev. Lett., 1997, 78, (26), pp. 50145017.
    5. 5)
      • 5. Luque, A., Martí, A., Stanley, C.: ‘Understanding intermediate-band solar cells’, Nat. Photonics, 2012, 6, (3), pp. 146152.
    6. 6)
      • 6. Martí, A., Antolín, E., Stanley, C.R.: ‘Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell’, Phys. Rev. Lett., 2006, 97, (24), p. 247701.
    7. 7)
      • 7. Okada, Y., Morioka, T., Yoshida, K.: ‘Increase in photocurrent by optical transitions via intermediate quantum states in direct-doped InAs/GaNAs strain-compensated quantum dot solar cell’, J. Appl. Phys., 2011, 109, (2), p. 024301.
    8. 8)
      • 8. Oshima, R., Takata, A., Okada, Y.: ‘Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells’, Appl. Phys. Lett., 2008, 93, (8), p. 083111.
    9. 9)
      • 9. Hubbard, S.M.: ‘Nanostructured photovoltaics for space power’, J. Nanophotonics, 2009, 3, (1), p. 031880.
    10. 10)
      • 10. Lam, P., Hatch, S., Wu, J.: ‘Voltage recovery in charged InAs/GaAs quantum dot solar cells’, Nano Energy, 2014, 6, pp. 159166.
    11. 11)
      • 11. Kim, D., Tang, M., Wu, J.: ‘Si-doped InAs/GaAs quantum-dot solar cell with AlAs cap layers’, IEEE J. Photovolt., 2016, 6, (4), pp. 906911.
    12. 12)
      • 12. Sablon, K.A., Little, J.W., Mitin, V.: ‘Strong enhancement of solar cell efficiency due to quantum dots with built-in charge’, Nano Lett.., 2011, 11, (6), pp. 23112317.
    13. 13)
      • 13. Driscoll, K., Bennett, M.F., Polly, S.J.: ‘Effect of quantum dot position and background doping on the performance of quantum dot enhanced GaAs solar cells’, Appl. Phys. Lett., 2014, 104, p. 023119.
    14. 14)
      • 14. Walker, A.W., Thériault, O., Wilkins, M.M.: ‘Positioning and doping effects on quantum dot multi-junction solar cell performance’, Prog. Photovolt., 2014, 23, (6), pp. 793799.
    15. 15)
      • 15. Liu, H., Sellers, I.R., Gutiérrez, M.: ‘Influences of the spacer layer growth temperature on multilayer InAs∕GaAs quantum dot structures’, J. Appl. Phys., 2004, 96, (4), pp. 19881992.
    16. 16)
      • 16. Tutu, F.K., Sellers, I.R., Peinado, M.G.: ‘Improved performance of multilayer InAs/GaAs quantum-dot solar cells using a high-growth-temperature GaAs spacer layer’, J. Appl. Phys., 2012, 111, (4), p. 046101.
    17. 17)
      • 17. Tutu, F.K., Lam, P., Wu, J.: ‘Inas/GaAs quantum dot solar cell with an AlAs cap layer’, Appl. Phys. Lett., 2013, 102, (16), p. 163907.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5069
Loading

Related content

content/journals/10.1049/iet-opt.2018.5069
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address