Performance analysis of AO-OFDM-CDMA with advanced 2D-hybrid coding for amplifier-free LR-PONs

Performance analysis of AO-OFDM-CDMA with advanced 2D-hybrid coding for amplifier-free LR-PONs

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

All-optical orthogonal frequency division multiplexing (AO-OFDM) and optical code-division multiple-access system (OCDMA) are combined in the first analytical model, which considers subcarrier hopping by means of advanced two-dimensional (2D) hybrid-coded (2D-HC) signature. The model incorporates probabilistic subcarrier overlapping, multiple-access interferences and is tested, for the first time, over amplifier-free long-reach passive optical networks (LR-PONs) using cost-effective intensity modulations and direct detection. For the upstream direction at 40 Gb/s, AO-OFDM-OCDMA outperforms a ‘classical’ multi-channel OCDMA system for low received powers and any number of simultaneous users. In comparison to conventional 1D Walsh–Hadamard, 1D prime code and 2D prime hop system, coding with 2D-HC can improve the performance of AO-OFDM-CDMA, thus allowing a higher number of simultaneous users in LR-PON without optical amplification. From numerical simulations, the authors show that 16-quadrature amplitude modulation (16-QAM) AO-OFDM-CDMA with 45 users has comparable performance to conventional multi-channel 16-QAM coherent optical OFDM in the downstream direction and up to 58 km with 1:45 split ratio, without employing complex coherent technology. Similarly, based on the feasibility of physical implementation configuration, a budget power calculation is performed showing 108 km as maximum reachability distance for 40 Gb/s QAM signal, 1:64 split ratio when considering standard forward-error-correction.


    1. 1)
      • 1. Subramanian, M.: ‘Network management, principles and practice’ (Pearson Edition, Chennai, 2010).
    2. 2)
      • 2. Shaukat, S.F., Ibrahim, U., Nazir, S.: ‘Monte Carlo analysis of broadband passive optical networks’, World Appl. Sci. J., 2011, 12, (8), pp. 11561164.
    3. 3)
      • 3. Kramer, G., Mukherjee, B., Pesavento, G.: ‘Ethernet PON (ePON): design and analysis of an optical access network’, Photonics Netw. Commun., 2001, 3, (3), pp. 307319.
    4. 4)
      • 4. Ragheb, M., Elnamaky, M., Fathallah, H., et al: ‘Performance evaluation of standard IPACT for future long reach passive optical networks (LR-PON)’. Proc. Int. Conf. Communication Technologies, Riyadh, Saudi Arabia, 2010.
    5. 5)
      • 5. 10-Gigabit-capable passive optical network (XG-PON) systems, ITU-T Recommendation G987.
    6. 6)
      • 6. Muciaccia, T., Gargano, F., Passaro, V.M.N.: ‘Passive optical access networks: state of the art and future evolution’, IEEE Photonics J., 2014, 1, pp. 323346.
    7. 7)
      • 7. Hillerkuss, D., Schmogrow, R., Schellinger, T., et al: ‘26 tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing’, Nat. Photonics, 2011, 5, pp. 364371.
    8. 8)
      • 8. Chow, C., Yeh, C., Sung, J., et al: ‘Direct-detection all-optical OFDM superchannel for long-reach PON’. Proc. 13th IEEE Int. Conf. Optical Communications and Networks (ICOCN), Suzhou, China, November 2014.
    9. 9)
      • 9. Giacoumidis, E., Wei, J.L., Yang, X.L., et al: ‘Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs’, IEEE Photonics J., 2010, 2, (2), pp. 130140.
    10. 10)
      • 10. Mao, T., Wang, Z., Wang, Q., et al: ‘Dual-mode index modulation aided OFDM’, IEEE Access J., 2017, 5, pp. 2387123880.
    11. 11)
      • 11. Wong, E.: ‘Next-generation broadband access networks and technologies’, IEEE J. Lightwave Technol., 2012, 30, (4), pp. 597608.
    12. 12)
      • 12. Mrabet, H., Dayoub, I., Attia, R.: ‘A comparative study of 2D-OCDMA-WDM system performance in 40G-PON context’, IET Optoelectron., 2017, 11, (4), pp. 141147.
    13. 13)
      • 13. Wang, X., Gao, Z., Wang, X., et al: ‘Bit-by-bit optical code scrambling technique for secure optical communication’, OSA Opt. Express, 2011, 19, (4), pp. 35033512.
    14. 14)
      • 14. Mhatli, S., Mrabet, H., Giacoumidis, E., et al: ‘Performance evaluation of an IMDD optical OFDM-CDMA system’, Appl. Opt., 2018, 57, (7), pp. 15691574.
    15. 15)
      • 15. van Veen, D.T., Houtsma, V.E., Gnauck, A.H., et al: ‘Demonstration of 40 Gb/s TDM-PON over 42 km with 31 dB optical power budget using an APD-based receiver’, IEEE J. Lightwave Technol., 2015, 33, (8), pp. 16751680.
    16. 16)
      • 16. Mrabet, H., Dayoub, I., Attia, R., et al: ‘Performance improving OCDMA system using 2-D optical codes with optical SIC receiver’, IEEE J. Lightwave Technol., 2009, 27, (21), pp. 47444753.
    17. 17)
      • 17. Mrabet, H., Attia, R., Dayoub, I.: ‘Analysis of the error probability for optical unipolar two-dimensional codes using a serial elimination interferences receiver’. 2007 ICTON Mediterranean Winter Conf. (ICTON-MW), Sousse, Tunisia, 6–8 December 2007, pp. 14.
    18. 18)
      • 18. Majumder, S., Azhari, A., Abbou, F.: ‘Impact of fiber chromatic dispersion on the BER performance of an optical CDMA IM/DD transmission system’, IEEE Photonics Technol. Lett., 2005, 17, (6), pp. 13401342.
    19. 19)
      • 19. Agrawal, G.: ‘Fiber-optic communications systems’ (Wiley-Interscience publication, 2012, 5th edn.).
    20. 20)
      • 20. Characteristics of a single-mode optical fibre and cable’, Recommendation ITU-T G.652, 2009.
    21. 21)
      • 21. Guo, X., Wang, Q., Zhou, L., et al: ‘High-speed OFDM-CDMA optical access network’, OSA Opt. Lett., 2016, 41, (8), pp. 18091812.
    22. 22)
      • 22. Agrawal, G.P.: ‘Nonlinear fiber optics’ (Academic Press, Cambridge, MA, 2012, 5th edn.).
    23. 23)
      • 23. Giacoumidis, E., Jarajreh, M.A., Sygletos, S., et al: ‘Dual-polarization multi-band OFDM transmission and transceiver limitations for up to 500 Gb/s in uncompensated long-haul links’, OSA Opt. Express, 2014, 22, (9), pp. 1097510986.
    24. 24)
      • 24. Assessment of advanced LR-PON transmission schema’, DISCUS Consortium, 2013.
    25. 25)
      • 25. Brown, G., Creath, K., Kogelnik, H., et al: ‘The optics encyclopedia (basic foundations and practical applications)’ (Wiley, Hoboken, 2004).

Related content

This is a required field
Please enter a valid email address