access icon free Restraining effect of film thickness on the behaviour of amplified spontaneous emission from methylammonium lead iodide perovskite

The authors report amplified spontaneous emission (ASE) behaviour from methylammonium lead iodide (CH3NH3PbI3) perovskite films of different thicknesses. The ASE threshold carrier density noticeably decreased with thickness, indicating the existence of different traps with perovskite films of smaller thicknesses. We attribute this behaviour to the presence of surface states, whose origin can result from different practical fabrication steps with samples of small thicknesses. The ASE threshold carrier density increased from 3.29 × 1018 cm−3 at a film thickness of 650 nm to 7.73 × 1018 cm−3 at a film thickness of 80 nm. This work warns that while decreasing the film thickness is of practical importance to reduce the ASE threshold pump current, e.g. in electrically driven light-emitting diodes, the solution processing of perovskites, newly re-discovered for their potential photonic and photovoltaic applications, can be a restraining factor. Band gap renormalisation (BGR) is also observed in the prepared films as a redshift in the ASE peak with increasing the pump power, and the BGR coefficient is estimated to be ∼ 6.3 × 10−8 eV cm.

Inspec keywords: organic-inorganic hybrid materials; optical pumping; surface states; photoluminescence; thin films; carrier density; electron-hole recombination; superradiance; energy gap

Other keywords: amplified spontaneous emission; spontaneous emission (ASE) behaviour; band gap renormalization; methylammonium lead iodide perovskite films; ASE threshold carrier density; surface states; ASE threshold pump current

Subjects: Stimulated emission (condensed matter); Thin film growth, structure, and epitaxy; Optical properties of thin films, low-dimensional and nanoscale structures; Electrical properties of thin films, low-dimensional and nanoscale structures; Photoluminescence (condensed matter); Electronic structure of composite materials (thin films, low dimensional and nanoscale structures)

References

    1. 1)
      • 15. Liao, Q., Hu, K., Zhang, H., et al: ‘Perovskite microdisk microlasers self-assembled from solution’, Adv. Mater., 2015, 27, (22), pp. 34053410.
    2. 2)
      • 11. Deschler, F., Price, M., Pathak, S., et al: ‘High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors’, J. Phys. Chem. Lett., 2014, 5, (8), pp. 14211426.
    3. 3)
      • 5. Sutherland, B.R., Sargent, E.H.: ‘Perovskite photonic sources’, Nat. Photonics, 2016, 10, (5), pp. 295302.
    4. 4)
      • 34. Brinkman, W.F., Rice, T.M.: ‘Electron-hole liquids in semiconductors’, Phys. Rev. B, 1973, 7, (4), pp. 15081523.
    5. 5)
      • 18. Yakunin, S., Protesescu, L., Krieg, F., et al: ‘Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites’, Nat. Commun., 2015, 6, p. 8056.
    6. 6)
      • 27. Stranks, S.D., Burlakov, V.M., Leijtens, T., et al: ‘Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states’, Phys. Rev. Appl., 2014, 2, (3), p. 34007.
    7. 7)
      • 19. Pan, J., Sarmah, S.P., Murali, B., et al: ‘Air-stable surface-passivated perovskite quantum dots for ultra-robust, single- and two-photon-induced amplified spontaneous emission’, J. Phys. Chem. Lett., 2015, 6, (24), pp. 50275033.
    8. 8)
      • 21. Im, J.-H., Lee, C.-R., Lee, J.-W., et al: ‘6.5% efficient perovskite quantum-dot-sensitized solar cell’, Nanoscale, 2011, 3, (10), p. 4088.
    9. 9)
      • 25. Stranks, S.D., Wood, S.M., Wojciechowski, K., et al: ‘Enhanced amplified spontaneous emission in perovskites using a flexible cholesteric liquid crystal reflector’, Nano Lett., 2015, 15, (8), pp. 49354941.
    10. 10)
      • 24. Li, Y., Yan, W., Li, Y., et al: ‘Direct observation of long electron-hole diffusion distance beyond 1 micrometer in CH3NH3PbI3 perovskite thin film’, Sci. Rep., 2015, 5, (1), p. 14485.
    11. 11)
      • 12. Dhanker, R., Brigeman, A.N., Larsen, A.V., et al: ‘Random lasing in organo-lead halide perovskite microcrystal networks’, Appl. Phys. Lett., 2014, 105, (15), p. 151112.
    12. 12)
      • 6. Zhu, K., Zhao, Y.: ‘Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications’, Chem. Soc. Rev., 2016, 45, (3), pp. 655689.
    13. 13)
      • 7. Chen, S., Roh, K., Lee, J., et al: ‘A photonic crystal laser from solution based organo-lead iodide perovskite thin films’, ACS Nano, 2016, 10, (4), pp. 39593967.
    14. 14)
      • 22. Chen, C.-C., Hong, Z., Li, G., et al: ‘One-step, low-temperature deposited perovskite solar cell utilizing small molecule additive’, J. Photonics Energy, 2015, 5, (1), p. 57405.
    15. 15)
      • 23. Jung, H.S., Park, N.: ‘Perovskite solar cells: from materials to devices’, Small, 2015, 11, (1), pp. 1025.
    16. 16)
      • 35. Bononi, A., Barbieri, L.: ‘Design of gain-clamped doped-fiber amplifiers for optimal dynamic performance’, J. Lightwave Technol., 1999, 17, (7), pp. 12291240.
    17. 17)
      • 14. Zhu, H., Fu, Y., Meng, F., et al: ‘Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors’, Nat. Mater., 2015, 14, (6), pp. 636642.
    18. 18)
      • 28. D'Innocenzo, V., Grancini, G., Alcocer, M.J.P., et al: ‘Excitons versus free charges in organo-lead tri-halide perovskites’, Nat. Commun., 2014, 5, (1), p. 3586.
    19. 19)
      • 13. Sutherland, B.R., Hoogland, S., Adachi, M.M., et al: ‘Conformal organohalide perovskites enable lasing on spherical resonators’, ACS Nano, 2014, 8, (10), pp. 1094710952.
    20. 20)
      • 1. Burschka, J., Pellet, N., Moon, S.-J., et al: ‘Sequential deposition as a route to high-performance perovskite-sensitized solar cells’, Nature, 2013, 499, (7458), pp. 316320.
    21. 21)
      • 30. Priante, D., Dursun, I., Alias, M.S., et al: ‘The recombination mechanisms leading to amplified spontaneous emission at the true-green wavelength in CH3NH3PbBr3 perovskites’, Appl. Phys. Lett., 2015, 106, (8), pp. 15.
    22. 22)
      • 2. Liu, M., Johnston, M.B., Snaith, H.J.: ‘Efficient planar heterojunction perovskite solar cells by vapour deposition’, Nature, 2013, 501, (7467), pp. 395398.
    23. 23)
      • 9. Arora, N., Dar, M.I., Hezam, M., et al: ‘Photovoltaic and amplified spontaneous emission studies of high-quality formamidinium lead bromide perovskite films’, Adv. Funct. Mater., 2016, 26, (17), pp. 28462854.
    24. 24)
      • 31. Zhang, Z.-Y., Wang, H.-Y., Zhang, Y.-X., et al: ‘The role of trap-assisted recombination in luminescent properties of organometal halide CH3NH3PbBr3 perovskite films and quantum dots’, Sci. Rep., 2016, 6, (1), p. 27286.
    25. 25)
      • 8. Mitzi, D.B., Wang, S., Feild, C.A., et al: ‘Conducting layered organic-inorganic halides containing -oriented perovskite sheets’, Science, 1995, 267, (5203), pp. 14731476.
    26. 26)
      • 33. Tränkle, G., Leier, H., Forchel, A., et al: ‘Dimensionality dependence of the band-gap renormalization in two- and three-dimensional electron-hole plasmas in GaAs’, Phys. Rev. Lett., 1987, 58, (4), pp. 419422.
    27. 27)
      • 20. Zhao, Y., Zhu, K.: ‘CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells’, J. Phys. Chem. C, 2014, 118, (18), pp. 94129418.
    28. 28)
      • 16. Zhang, Q., Ha, S.T., Liu, X., et al: ‘Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers’, Nano Lett., 2014, 14, (10), pp. 59956001.
    29. 29)
      • 26. Yang, D., Xie, C., Sun, J., et al: ‘Amplified spontaneous emission from organic-inorganic hybrid lead iodide perovskite single crystals under direct multiphoton excitation’, Adv. Opt. Mater., 2016, 4, (7), pp. 10531059.
    30. 30)
      • 10. Xing, G., Mathews, N., Lim, S.S., et al: ‘Low-temperature solution-processed wavelength-tunable perovskites for lasing’, Nat. Mater., 2014, 13, (5), pp. 476480.
    31. 31)
      • 32. Yang, Y., Ostrowski, D.P., France, R.M., et al: ‘Observation of a hot-phonon bottleneck in lead-iodide perovskites’, Nat. Photonics, 2015, 10, (1), pp. 5359.
    32. 32)
      • 3. Tan, Z.-K., Moghaddam, R.S., Lai, M.L., et al: ‘Bright light-emitting diodes based on organometal halide perovskite’, Nat. Nanotechnol., 2014, 9, (9), pp. 687692.
    33. 33)
      • 17. Wang, Y., Li, X., Song, J., et al: ‘All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics’, Adv. Mater., 2015, 27, (44), pp. 71017108.
    34. 34)
      • 4. Qaid, S.M.H., Al Sobaie, M.S., Majeed Khan, M.A., et al: ‘Band-gap tuning of lead halide perovskite using a single step spin-coating deposition process’, Mater. Lett., 2016, 164, (135), pp. 498501.
    35. 35)
      • 29. Wehrenfennig, C., Liu, M., Snaith, H.J., et al: ‘Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films’, APL Mater., 2014, 2, (8), p. 81513.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5035
Loading

Related content

content/journals/10.1049/iet-opt.2018.5035
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading