access icon free Thermodynamic processes on a semiconductor surface during in-situ multi-beam laser interference patterning

Laser interference has been widely used to produce one-dimensional gratings and more recently has shown great potential for two-dimensional patterning. In this study, the authors examine by simulation, its application to in-situ patterning during materials growth. To understand the potential, it is important to study the surface processes resulting from the laser–matter interaction, which have a key influence on the resulting growth mechanisms. In this work, the intensity distribution and the laser–semiconductor interaction resulting from four-beam interference patterns are analysed by numerical simulations. In particular, the authors derive the time and spatially dependent thermal distribution along with the thermal-induced desorption and surface diffusion. The results provide a crucial understanding of the light-induced thermal profile and show that the surface temperature and the surface adatom kinetics can be controlled by multi-beam pulsed laser interference patterning due to photothermal reactions. The approach has potential as an in-situ technique for the fast and precise nanostructuring of semiconductor material surfaces.

Inspec keywords: gallium arsenide; III-V semiconductors; thermally stimulated desorption; light interference; photothermal effects; laser materials processing; thermodynamic properties; nanopatterning; surface diffusion

Other keywords: thermal-induced desorption; laser–matter interaction; surface temperature; thermodynamic processes; GaAs; four-beam interference patterns; spatially dependent thermal distribution; surface diffusion; surface adatom kinetics; one-dimensional gratings; laser–semiconductor interaction; photothermal reactions; in-situ multibeam laser interference patterning; semiconductor surface; light-induced thermal profile; two-dimensional patterning

Subjects: Other topics in thermal properties of condensed matter; II-VI and III-V semiconductors; Adsorption and desorption kinetics; evaporation and condensation; Laser materials processing; Surface diffusion, segregation and interfacial compound formation; Nanometre-scale semiconductor fabrication technology; Thermodynamic properties and entropy; Nanopatterning; Sorption and accommodation coefficients (surface chemistry)

References

    1. 1)
      • 12. Lasagni, A., Bieda, M., Wetzig, A., et al: ‘Direct laser interference systems for the surface functionalization of powertrain components’. Proc. Global Powertrain Congress, Munich, Germany, 2011, pp. 167178.
    2. 2)
      • 28. Liu, Q., Duan, X., Peng, C.: ‘Novel optical technologies for nanofabrication’ (Springer, New York, 2014).
    3. 3)
      • 29. Wu, J., Jin, P.: ‘Self-assembly of InAs quantum dots on GaAs (001) by molecular beam epitaxy’, Front. Phys., 2015, 10, (1), pp. 758.
    4. 4)
      • 20. Osipov, A., Kukushkin, S., Schmitt, F., et al: ‘Kinetic model of coherent island formation in the case of self-limiting growth’, Phys. Rev. B, 2001, 64, (20), p. 205421.
    5. 5)
      • 16. Zhang, Z.: ‘Atomistic processes in the early stages of thin-film growth’, Science, 1997, 276, (5311), pp. 377383.
    6. 6)
      • 1. Makeev, M.: ‘Self-organized quantum dot superstructures for nanoelectronic and optoelectronic applications’, J. Nanoelectronics Optoelectron., 2006, 1, (2), pp. 176193.
    7. 7)
      • 3. Luo, Q., Hou, C., Bai, Y., et al: ‘Protein assembly: versatile approaches to construct highly ordered nanostructures’, Chem. Rev., 2016, 116, (22), pp. 1357113632.
    8. 8)
      • 33. Wang, Z., Seebauer, E.: ‘Estimating pre-exponential factors for desorption from semiconductors: consequences for a priori process modeling’, Appl. Surf. Sci., 2001, 181, (1–2), pp. 111120.
    9. 9)
      • 17. Ishii, A., Fujiwara, K., Aisaka, T.: ‘Dynamics of In atom during InAs/GaAs (001) growth process’, Appl. Surf. Sci., 2003, 216, (1–4), pp. 478482.
    10. 10)
      • 27. Hariharan, P.: ‘Optical interferometry’ (Academic Press, New York, 1985, 2nd edn. 2003).
    11. 11)
      • 5. Kloeffel, C., Loss, D.: ‘Prospects for spin-based quantum computing in quantum dots’, Annu. Rev. Condens. Matter Phys., 2013, 4, (1), pp. 5181.
    12. 12)
      • 24. Srivastava, P., Pratap Singh, A., Kapoor, A.: ‘Theoretical analysis of pit formation in GaAs surfaces in picosecond and femtosecond laser ablation regimes’, Opt. Laser Technol., 2006, 38, (8), pp. 649653.
    13. 13)
      • 32. Mozume, T., Ohbu, I.: ‘Desorption of indium during the growth of GaAs/InGaAs/GaAs heterostructures by molecular beam epitaxy’, Jpn. J. Appl. Phys., 1992, 31, (Part 1, No. 10), pp. 32773281.
    14. 14)
      • 2. Leung, S., Zhang, Q., Xiu, F., et al: ‘Light management with nanostructures for optoelectronic devices’, J. Phys. Chem. Lett., 2014, 5, (8), pp. 14791495.
    15. 15)
      • 15. Ren, Z., Kan, Q., Ran, G., et al: ‘Hybrid single-mode laser based on graphene bragg gratings on silicon’, Opt. Lett., 2017, 42, (11), p. 2134.
    16. 16)
      • 23. Hendow, S., Shakir, S.: ‘Structuring materials with nanosecond laser pulses’, Opt. Express, 2010, 18, (10), p. 10188.
    17. 17)
      • 25. Garg, A., Kapoor, A., Tripathi, K.: ‘Laser-induced damage studies in GaAs’, Opt. Laser Technol., 2003, 35, (1), pp. 2124.
    18. 18)
      • 30. Colayni, G., Venkat, R.: ‘Growth dynamics of InGaAs by MBE: process simulation and theoretical analysis’, J. Cryst. Growth, 2000, 211, (1–4), pp. 2126.
    19. 19)
      • 14. Domínguez, S., García, O., Ezquer, M., et al: ‘Optimization of 1D photonic crystals to minimize the reflectance of silicon solar cells’, Photonics Nanostruct. - Fundamentals Applic., 2012, 10, (1), pp. 4653.
    20. 20)
      • 11. Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: ‘Photonic crystals: putting a new twist on light’, Nature, 1997, 387, (6635), pp. 830830.
    21. 21)
      • 8. Kim, Y., Na, K., Choi, S., et al: ‘Atomic force microscopy-based nano-lithography for nano-patterning: a molecular dynamic study’, J. Mater. Process. Technol., 2004, 155–156, pp. 18471854.
    22. 22)
      • 35. Seebauer, E.G., Allen, C.E: ‘Estimating surface diffusion coefficients’, Prog. Surf. Sci., 1995, 49, (3), pp. 265330.
    23. 23)
      • 19. Barabási, A.: ‘Thermodynamic and kinetic mechanisms in self-assembled quantum dot formation’, Mater. Sci. Eng. B, 1999, 67, (1–2), pp. 2330.
    24. 24)
      • 7. Vieu, C., Carcenac, F., Pépin, A., et al: ‘Electron beam lithography: resolution limits and applications’, Appl. Surf. Sci., 2000, 164, (1–4), pp. 111117.
    25. 25)
      • 31. Heyn, C., Endler, D., Zhang, K., et al: ‘Formation and dissolution of InAs quantum dots on GaAs’, J. Cryst. Growth, 2000, 210, (4), pp. 421428.
    26. 26)
      • 22. Sanz, M., Rebollar, E., Ganeev, R., et al: ‘Nanosecond laser-induced periodic surface structures on wide band-gap semiconductors’, Appl. Surf. Sci., 2013, 278, pp. 325329.
    27. 27)
      • 10. Zhang, J., Venkataramani, S., Xu, H., et al: ‘Combined topographical and chemical micropatterns for templating neuronal networks’, Biomaterials, 2006, 27, (33), pp. 57345739.
    28. 28)
      • 26. Craciun, V., Craciun, D.: ‘Thermal mechanisms in laser ablation of GaAs’, Appl. Surf. Sci., 1997, 109–110, pp. 312316.
    29. 29)
      • 13. Xuan, M., Dai, L., Jia, H., et al: ‘Fabrication of large-area nano-scale patterned sapphire substrate with laser interference lithography’, Optoelectron. Lett., 2014, 10, (1), pp. 5154.
    30. 30)
      • 21. Chiu, C., Huang, Z., Poh, C.: ‘Formation of nanostructures by the activated Stranski-Krastanow transition method’, Phys. Rev. Lett., 2004, 93, (13), p. 136105.
    31. 31)
      • 4. Hirayama, Y., Miranowicz, A., Ota, T., et al: ‘Nanometre-scale nuclear-spin device for quantum information processing’, J. Phys., Condens. Matter., 2006, 18, (21), pp. S885S900.
    32. 32)
      • 18. Ratsch, C., Venables, J.: ‘Nucleation theory and the early stages of thin film growth’, J. Vac. Sci. Technol. A: Vac., Surf. Films, 2003, 21, (5), pp. S96S109.
    33. 33)
      • 34. Rosini, M., Righi, M.C., Kratzer, P., et al: ‘Indium surface diffusion on InAs (2 × 4) reconstructed wetting layers on GaAs (001)’, Phys. Rev. B, 2009, 79, (7), p. 075302.
    34. 34)
      • 6. Kiravittaya, S., Rastelli, A., Schmidt, O.: ‘Advanced quantum dot configurations’, Rep. Prog. Phys., 2009, 72, (4), p. 046502.
    35. 35)
      • 9. Wang, K., Chelnokov, A., Rowson, S., et al: ‘Focused-ion-beam etching in macroporous silicon to realize three-dimensional photonic crystals’, J. Phys. D: Appl. Phys., 2000, 33, (20), pp. L119L123.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5028
Loading

Related content

content/journals/10.1049/iet-opt.2018.5028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading