http://iet.metastore.ingenta.com
1887

Thermodynamic processes on a semiconductor surface during in-situ multi-beam laser interference patterning

Thermodynamic processes on a semiconductor surface during in-situ multi-beam laser interference patterning

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Laser interference has been widely used to produce one-dimensional gratings and more recently has shown great potential for two-dimensional patterning. In this study, the authors examine by simulation, its application to in-situ patterning during materials growth. To understand the potential, it is important to study the surface processes resulting from the laser–matter interaction, which have a key influence on the resulting growth mechanisms. In this work, the intensity distribution and the laser–semiconductor interaction resulting from four-beam interference patterns are analysed by numerical simulations. In particular, the authors derive the time and spatially dependent thermal distribution along with the thermal-induced desorption and surface diffusion. The results provide a crucial understanding of the light-induced thermal profile and show that the surface temperature and the surface adatom kinetics can be controlled by multi-beam pulsed laser interference patterning due to photothermal reactions. The approach has potential as an in-situ technique for the fast and precise nanostructuring of semiconductor material surfaces.

References

    1. 1)
      • 1. Makeev, M.: ‘Self-organized quantum dot superstructures for nanoelectronic and optoelectronic applications’, J. Nanoelectronics Optoelectron., 2006, 1, (2), pp. 176193.
    2. 2)
      • 2. Leung, S., Zhang, Q., Xiu, F., et al: ‘Light management with nanostructures for optoelectronic devices’, J. Phys. Chem. Lett., 2014, 5, (8), pp. 14791495.
    3. 3)
      • 3. Luo, Q., Hou, C., Bai, Y., et al: ‘Protein assembly: versatile approaches to construct highly ordered nanostructures’, Chem. Rev., 2016, 116, (22), pp. 1357113632.
    4. 4)
      • 4. Hirayama, Y., Miranowicz, A., Ota, T., et al: ‘Nanometre-scale nuclear-spin device for quantum information processing’, J. Phys., Condens. Matter., 2006, 18, (21), pp. S885S900.
    5. 5)
      • 5. Kloeffel, C., Loss, D.: ‘Prospects for spin-based quantum computing in quantum dots’, Annu. Rev. Condens. Matter Phys., 2013, 4, (1), pp. 5181.
    6. 6)
      • 6. Kiravittaya, S., Rastelli, A., Schmidt, O.: ‘Advanced quantum dot configurations’, Rep. Prog. Phys., 2009, 72, (4), p. 046502.
    7. 7)
      • 7. Vieu, C., Carcenac, F., Pépin, A., et al: ‘Electron beam lithography: resolution limits and applications’, Appl. Surf. Sci., 2000, 164, (1–4), pp. 111117.
    8. 8)
      • 8. Kim, Y., Na, K., Choi, S., et al: ‘Atomic force microscopy-based nano-lithography for nano-patterning: a molecular dynamic study’, J. Mater. Process. Technol., 2004, 155–156, pp. 18471854.
    9. 9)
      • 9. Wang, K., Chelnokov, A., Rowson, S., et al: ‘Focused-ion-beam etching in macroporous silicon to realize three-dimensional photonic crystals’, J. Phys. D: Appl. Phys., 2000, 33, (20), pp. L119L123.
    10. 10)
      • 10. Zhang, J., Venkataramani, S., Xu, H., et al: ‘Combined topographical and chemical micropatterns for templating neuronal networks’, Biomaterials, 2006, 27, (33), pp. 57345739.
    11. 11)
      • 11. Joannopoulos, J.D., Villeneuve, P.R., Fan, S.: ‘Photonic crystals: putting a new twist on light’, Nature, 1997, 387, (6635), pp. 830830.
    12. 12)
      • 12. Lasagni, A., Bieda, M., Wetzig, A., et al: ‘Direct laser interference systems for the surface functionalization of powertrain components’. Proc. Global Powertrain Congress, Munich, Germany, 2011, pp. 167178.
    13. 13)
      • 13. Xuan, M., Dai, L., Jia, H., et al: ‘Fabrication of large-area nano-scale patterned sapphire substrate with laser interference lithography’, Optoelectron. Lett., 2014, 10, (1), pp. 5154.
    14. 14)
      • 14. Domínguez, S., García, O., Ezquer, M., et al: ‘Optimization of 1D photonic crystals to minimize the reflectance of silicon solar cells’, Photonics Nanostruct. - Fundamentals Applic., 2012, 10, (1), pp. 4653.
    15. 15)
      • 15. Ren, Z., Kan, Q., Ran, G., et al: ‘Hybrid single-mode laser based on graphene bragg gratings on silicon’, Opt. Lett., 2017, 42, (11), p. 2134.
    16. 16)
      • 16. Zhang, Z.: ‘Atomistic processes in the early stages of thin-film growth’, Science, 1997, 276, (5311), pp. 377383.
    17. 17)
      • 17. Ishii, A., Fujiwara, K., Aisaka, T.: ‘Dynamics of In atom during InAs/GaAs (001) growth process’, Appl. Surf. Sci., 2003, 216, (1–4), pp. 478482.
    18. 18)
      • 18. Ratsch, C., Venables, J.: ‘Nucleation theory and the early stages of thin film growth’, J. Vac. Sci. Technol. A: Vac., Surf. Films, 2003, 21, (5), pp. S96S109.
    19. 19)
      • 19. Barabási, A.: ‘Thermodynamic and kinetic mechanisms in self-assembled quantum dot formation’, Mater. Sci. Eng. B, 1999, 67, (1–2), pp. 2330.
    20. 20)
      • 20. Osipov, A., Kukushkin, S., Schmitt, F., et al: ‘Kinetic model of coherent island formation in the case of self-limiting growth’, Phys. Rev. B, 2001, 64, (20), p. 205421.
    21. 21)
      • 21. Chiu, C., Huang, Z., Poh, C.: ‘Formation of nanostructures by the activated Stranski-Krastanow transition method’, Phys. Rev. Lett., 2004, 93, (13), p. 136105.
    22. 22)
      • 22. Sanz, M., Rebollar, E., Ganeev, R., et al: ‘Nanosecond laser-induced periodic surface structures on wide band-gap semiconductors’, Appl. Surf. Sci., 2013, 278, pp. 325329.
    23. 23)
      • 23. Hendow, S., Shakir, S.: ‘Structuring materials with nanosecond laser pulses’, Opt. Express, 2010, 18, (10), p. 10188.
    24. 24)
      • 24. Srivastava, P., Pratap Singh, A., Kapoor, A.: ‘Theoretical analysis of pit formation in GaAs surfaces in picosecond and femtosecond laser ablation regimes’, Opt. Laser Technol., 2006, 38, (8), pp. 649653.
    25. 25)
      • 25. Garg, A., Kapoor, A., Tripathi, K.: ‘Laser-induced damage studies in GaAs’, Opt. Laser Technol., 2003, 35, (1), pp. 2124.
    26. 26)
      • 26. Craciun, V., Craciun, D.: ‘Thermal mechanisms in laser ablation of GaAs’, Appl. Surf. Sci., 1997, 109–110, pp. 312316.
    27. 27)
      • 27. Hariharan, P.: ‘Optical interferometry’ (Academic Press, New York, 1985, 2nd edn. 2003).
    28. 28)
      • 28. Liu, Q., Duan, X., Peng, C.: ‘Novel optical technologies for nanofabrication’ (Springer, New York, 2014).
    29. 29)
      • 29. Wu, J., Jin, P.: ‘Self-assembly of InAs quantum dots on GaAs (001) by molecular beam epitaxy’, Front. Phys., 2015, 10, (1), pp. 758.
    30. 30)
      • 30. Colayni, G., Venkat, R.: ‘Growth dynamics of InGaAs by MBE: process simulation and theoretical analysis’, J. Cryst. Growth, 2000, 211, (1–4), pp. 2126.
    31. 31)
      • 31. Heyn, C., Endler, D., Zhang, K., et al: ‘Formation and dissolution of InAs quantum dots on GaAs’, J. Cryst. Growth, 2000, 210, (4), pp. 421428.
    32. 32)
      • 32. Mozume, T., Ohbu, I.: ‘Desorption of indium during the growth of GaAs/InGaAs/GaAs heterostructures by molecular beam epitaxy’, Jpn. J. Appl. Phys., 1992, 31, (Part 1, No. 10), pp. 32773281.
    33. 33)
      • 33. Wang, Z., Seebauer, E.: ‘Estimating pre-exponential factors for desorption from semiconductors: consequences for a priori process modeling’, Appl. Surf. Sci., 2001, 181, (1–2), pp. 111120.
    34. 34)
      • 34. Rosini, M., Righi, M.C., Kratzer, P., et al: ‘Indium surface diffusion on InAs (2 × 4) reconstructed wetting layers on GaAs (001)’, Phys. Rev. B, 2009, 79, (7), p. 075302.
    35. 35)
      • 35. Seebauer, E.G., Allen, C.E: ‘Estimating surface diffusion coefficients’, Prog. Surf. Sci., 1995, 49, (3), pp. 265330.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5028
Loading

Related content

content/journals/10.1049/iet-opt.2018.5028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address