access icon free Influence of birefringence fibre length on demodulation sensitivity based on a fibre loop mirror sensor

The influence of birefringence fibre (BF) loop mirror (Bi-FLM) length on the light intensity sensitivity to strain was analysed theoretically and investigated experimentally. The same type of BF but the different length was chosen as the sensing element to be glued to the test object. The relationship between the light intensity and strain was obtained for the Bi-FLM with different BF length. Afterwards, the light intensity signals were converted into voltage signals. The influence of BF length on the average voltage sensitivity to strain was investigated experimentally. The experimental results indicate that the Bi-FLM with a long BF has a high average voltage sensitivity to strain but a small strain measurement range, while the Bi-FLM with a short BF has a low average voltage sensitivity to strain but a large strain measurement range. From the experiments carried out, it was seen that the average voltage sensitivity to strain can be improved by increasing the BF length. This method does not increase the system complexity.

Inspec keywords: strain sensors; demodulation; birefringence; strain measurement; mirrors; fibre optic sensors

Other keywords: sensing element; Bi-FLM; average voltage sensitivity; demodulation sensitivity; BF length; birefringence fibre loop mirror; birefringence fibre length; fibre loop mirror sensor; strain measurement range; light intensity signals; voltage signals; light intensity sensitivity

Subjects: Fibre optic sensors; fibre gyros; Fibre optic sensors; Mechanical variables measurement; Fibre optics; Optical lenses and mirrors; Measurement of mechanical variables; Optical system design

References

    1. 1)
      • 20. Kang, J., Dong, X.Y., Zhu, Y.H., et al: ‘A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers’, Opt. Commun., 2014, 322, pp. 105108.
    2. 2)
      • 5. Gong, H.P., Chan, C.C., Zu, P., et al: ‘Curvature measurement by using low-birefringence photonic crystal fiber based sagnac loop’, Opt. Commun., 2010, 283, pp. 31423144.
    3. 3)
      • 1. Frazao, O., Santos, J.L, Baptista, J.M.: ‘Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors’, IEEE Photonics Technol. Lett., 2007, 19, pp. 12601262.
    4. 4)
      • 21. Jiang, Y., Zeng, J., Liang, D.K., et al: ‘The influences of polarization-maintaining fiber length and sensing length on axial strain sensitivity of polarization-maintaining fiber loop mirror’, J. Intel. Mat. Syst. Str., 2014, 25, pp. 19596194.
    5. 5)
      • 7. Zu, P., Chan, C.C., Jin, Y.X., et al: ‘A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer’, IEEE Photonics Technol. Lett., 2011, 23, pp. 920922.
    6. 6)
      • 6. Frazao, O., Baptista, J.M., Santos, J.L., et al: ‘Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a sagnac interferometer’, Appl. Opt., 2008, 47, pp. 25202523.
    7. 7)
      • 18. Jiang, Y., Liang, D.K., Lu, J.Y.: ‘Voltage demodulation and vibration monitoring based on a polarization maintaining fiber loop mirror’, J. Intel. Mat. Syst. Str., 2017, 28, pp. 18321838.
    8. 8)
      • 3. Lim, K.S., Pua, C.H., Harun, S.W., et al: ‘Temperature-sensitive dual-segment polarization maintaining fiber sagnac loop mirror’, Opt. Laser Technol., 2010, 42, pp. 377381.
    9. 9)
      • 2. Gong, H.P., Chan, C.C., Chen, L.H., et al: ‘Strain sensor realized by using low-birefringence photonic-crystal-fiber-based sagnac loop’, IEEE Photonics Technol. Lett., 2010, 22, pp. 12381240.
    10. 10)
      • 9. Bo, D., Qida, Z., Feng, L., et al: ‘Liquid-level sensor with a high-birefringence-fiber loop mirror’, Appl. Opt., 2006, 45, pp. 77677771.
    11. 11)
      • 8. Fu, H.Y., Tam, H.Y., Shao, L., et al: ‘Pressure sensor realized with polarization-maintaining photonic crystal fiber-based sagnac interferometer’, Appl. Opt., 2008, 47, pp. 28352839.
    12. 12)
      • 12. Wang, X., Lou, S.Q., Sheng, X.Z., et al: ‘Simultaneous measurement of torsion, strain and temperature using a side-leakage photonic crystal fiber loop mirror’, Infrared Phys. Technol., 2016, 76, pp. 603607.
    13. 13)
      • 10. Sun, G., Tang, H., Hu, Y., et al: ‘Strain and temperature discrimination using high birefringence fiber sagnac interferometer with enhanced sensitivities’, IEEE Photonics Technol. Lett., 2012, 24, pp. 587589.
    14. 14)
      • 4. Silva, R.M., Ferreira, M.S., Frazao, O.: ‘Temperature independent torsion sensor using a high-birefringent sagnac loop interferometer’, Opt. Commun., 2012, 285, pp. 11671170.
    15. 15)
      • 19. Qian, W.W., Zhao, C.L., Dong, X.Y., et al: ‘Intensity measurement based temperature-independent strain sensor using a highly birefringent photonic crystal fiber loop mirror’, Opt. Commun., 2010, 283, pp. 525052544.
    16. 16)
      • 14. Qian, W.W., Zhao, C.L., He, S.L., et al: ‘High-sensitivity temperature sensor based on an alcohol-filled photonic crystal fiber loop mirror’, Opt. Lett., 2011, 36, pp. 15481550.
    17. 17)
      • 17. Zhao, C.L., Wang, Z.Q., Zhang, S.Q., et al: ‘Phenomenon in an alcohol not full-filled temperature sensor based on an optical fiber sagnac interferometer’, Opt. Lett., 2012, 37, pp. 47894791.
    18. 18)
      • 11. Do-Hyun, K., Kang, J.U.: ‘Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity’, Opt. Express, 2004, 12, pp. 44904495.
    19. 19)
      • 15. Frazao, O., Baptista, J.M., Santos, J.L.: ‘Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror’, IEEE Sens. J., 2007, 7, pp. 14531455.
    20. 20)
      • 13. Zhang, J., Qiao, X.G., Guo, T., et al: ‘Highly-sensitive temperature sensor using a Hi-Bi fiber tip probe’, IEEE Sens. J., 2012, 12, pp. 20772080.
    21. 21)
      • 16. Wang, J.F., Liang, H.H., Dong, X.Y., et al: ‘A temperature-insensitive relative humidity sensor by using polarization maintaining fiber-based sagnac interferometer’, Microw Opt. Technol. Lett., 2013, 55, pp. 23052307.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.5016
Loading

Related content

content/journals/10.1049/iet-opt.2018.5016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading