Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Low-cost coaxial DFB LD transmitter optical subassembly for 25 Gb/s NRZ and 50 Gb/s PAM-4 transmissions

Here, a directly modulated coaxial distributed feedback (DFB) laser diode (LD) transmitter optical subassembly (TOSA) module is proposed for 25 Gb/s non-return-to-zero (NRZ) and 50 Gb/s four-level pulse amplitude modulation (PAM-4) transmissions. A low-cost TO-56 header was used in the DFB LD TOSA package. The high-frequency performance of the coaxial 1310 nm DFB LD TOSA module was simulated and analysed. The simulated frequency response can correspond with the measured result, and the 3 dB bandwidth was 19 GHz. In the back-to-back and 10 km signal mode fibre transmissions, 25 Gb/s NRZ and 50 Gb/s PAM-4 eye diagrams of the DFB LD TOSA were measured. Clear 25 Gb/s NRZ and 50 Gb/s PAM-4 eye openings can be observed. For 25 Gb/s NRZ transmissions, the received sensitivity was −11.8 dBm under a bit error rate (BER) of 10−12. For 50 Gb/s PAM-4 transmissions, the BER was estimated to be below the forward error correction threshold. The low-cost coaxial DFB LD TOSA is suitable in 100, 200, and 400 Gb/s transmissions.

References

    1. 1)
      • 7. Baveja, P. P., Li, M., Wang, D., et al: ‘56 Gb/s PAM-4 directly modulated laser for 200G/400G data-center optical links’. Optical Fiber Communication Conf., Los Angeles, CA, USA, 2017, pp. 13, Th4G-6.
    2. 2)
      • 10. Shih, T.-T., Tseng, P.-H., Chen, H.-W, et al: ‘Low-cost TO-can header for coaxial laser modules in 25-Gbit/s transmission applications’, IEEE Trans. Compon. Packag. Manuf. Technol., 2011, 1, (4), pp. 557565.
    3. 3)
      • 4. Drolet, P., Duplessis, L.: ‘100 g ethernet and OTU4 testing challenges: from the lab to the field’, IEEE Commun. Mag., 2010, 48, (7), pp. 7882.
    4. 4)
      • 9. Noguchi, D., Yamamoto, H., Shibuya, N., et al: ‘Wide temperature range operation of 25.8 Gbit/s uncooled direct modulated laser (DML) TOSA with extremely high eye mask margin’. Electronic Components and Technology Conf., Las Vegas, NV, USA, 2016, pp. 10931098.
    5. 5)
      • 8. Nakajima, T., Fukamachi, T., Akashiet, M., et al: ‘25.8 gbps error free transmission over 10 km at wavelengths from 1271 to 1331 nm by uncooled (25 to 85°C) directly modulated DFB lasers for 100G-CWDM4’. Optical Fiber Communication Conf., Los Angeles, CA, USA, 2015, pp. 13, Th1G.6.
    6. 6)
      • 1. Sakr, S., Liu, A., Batista, D., et al: ‘A survey on large scale data management approaches in cloud environments’, IEEE Commun. Surv. Tutor., 2011, 13, (3), pp. 311336.
    7. 7)
      • 12. Lin, C.-C., Chi, Y.-C., Kuo, H.-C., et al: ‘Beyond-bandwidth electrical-pulse modulation of a TO-CAN packaged VCSEL for 10 Gbit/s injection-locked NRZ-to-RZ transmission’, J. Lightwave Technol., 2011, 29, (6), pp. 830841.
    8. 8)
      • 5. Aruga, H., Mochizuki, K., Itamoto, H., et al: ‘Four-channel 25 Gbps optical receiver for 100 Gbps ethernet with built-in demultiplexer optics’. Proc. European Conf. Optical Communication (ECOC), Torino, Italy, 2010, pp. 13, Th10D4.
    9. 9)
      • 15. Shih, T.-T., Lin, M.-C., Cheng, W.-H.: ‘High-performance low-cost 10 Gb/s coaxial DFB laser module packaging by conventional TO-Can materials and processes’, IEEE J. Sel. Top. Quantum Electron., 2006, 12, (5), pp. 10091016.
    10. 10)
      • 16. Pavan, S. K., Lavrencik, J., Ralph, S. E.: ‘Experimental demonstration of 51.56 Gbit/s PAM-4 at 905 nm and impact of level dependent RIN’. European Conf. on Optical Communication (ECOC), Cannes, France, 2014, pp. 13, P.7.23.
    11. 11)
      • 17. Chagnon, M., Lessard, S., Plant, D. V.: ‘336 Gb/s in direct detection below KP4 FEC threshold for intra data center applications’, IEEE Photonics Technol. Lett., 2016, 28, (20), pp. 22332236.
    12. 12)
      • 6. IEEE p802.3bsTM/D1.2 draft standard for ethernet amendment: media access control parameters, physical layers and, management parameters for 400 Gb/s operation’, Available at http://www.ieee802.org/3/bs/, accessed 9 February 2018.
    13. 13)
      • 2. Cole, C.: ‘Beyond 100G client optics’, IEEE Commun. Mag., 2012, 50, (2), pp. s58s66.
    14. 14)
      • 11. Shih, T.-T., Tseng, P.-H., Lai, Y.-Y., et al: ‘A 25 Gbit/s transmitter optical sub-assembly package employing cost-effective TO-CAN materials and processes’, J. Lightwave Technol., 2012, 30, (6), pp. 834840.
    15. 15)
      • 3. D'Ambrosia, J.: ‘The 400 GbE project ahead’. Presented at the IEEE 802.3 400 Gb/s Ethernet Study Group, Interim Meeting, Victoria, Canada, 2013.
    16. 16)
      • 14. Lee, J., Nam, S., Jeong, J.: ‘A complete small-signal equivalent circuit model of cooled butterfly-type 2.5 Gbps DFB laser modules and its application to improve high frequency characteristics’, IEEE Trans. Adv. Packag., 2002, 25, (4), pp. 543548.
    17. 17)
      • 13. Shih, T.-T., Jou, J.-J., Chu, S.-S.: ‘Analysis of high frequency performance of TO-46 header through three-dimensional full wave electromagnetic model and circuit model’, Int. J. Numer. Model. Electron. Netw. Devices Fields, 2016, 29, (2), pp. 301308.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2018.0027
Loading

Related content

content/journals/10.1049/iet-opt.2018.0027
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address