http://iet.metastore.ingenta.com
1887

Device performance analysis for lead-free perovskite solar cell optimisation

Device performance analysis for lead-free perovskite solar cell optimisation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A comprehensive numerical analysis for a lead-free perovskite solar cell (PSC) has been carried out using device simulation software. Various factors affecting the solar cell's performance have been investigated for device optimisation; more specifically optimisation of device buffer and the absorber layer. Different design strategies for optimising the power conversion efficiency (PCE) through solar cell capacitance simulator numerical simulation have been proposed. Enumerated study of the effects of thickness, band gap, light illumination and defect area on the PCE is carried out. In this study, two types of configurations (La0.7Sr0.3MnO3/zinc oxide and La0.7Sr0.3MnO3/Nb:SrTiO3) are simulated which gives highest conversion efficiency of 11% at 600 nm and 32% at 350 nm wavelength. The impact of defect density has also been addressed to analyse the performance of cell module. The optimisation of device parameters pinpoints enormous potential for the enhancement of conversion efficiency of high-efficient PSC.

References

    1. 1)
      • 1. Jeon, N.J., Noh, J.H., Yang, W.S., et al: ‘Compositional engineering of perovskite materials for high-performance solar cells’, Nature, 2015, 517, pp. 476480.
    2. 2)
      • 2. Grånäs, O., Vinichenko, D., Kaxiras, E.: ‘Establishing the limits of efficiency of perovskite solar cells from first principles modeling’, Sci. Rep., 2016, 6, p. 36108 (16).
    3. 3)
      • 3. Fan, Z., Sun, K., Wang, J.: ‘Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites’, J. Mater. Chem. A, 2015, 3, pp. 1880918828.
    4. 4)
      • 4. Babayigit, A., Thanh, D.D., Ethirajan, A., et al: ‘Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio’, Sci. Rep., 2016, 6, p. 18721 (111).
    5. 5)
      • 5. Jadhav, S.V., Nikam, D.S., Khot, V.M., et al: ‘Studies on colloidal stability of PVP-coated LSMO nanoparticles for magnetic fluid hyperthermia’, New J. Chem., 2013, 37, pp. 31213130.
    6. 6)
      • 6. Salamon, M., Jaime, M.: ‘The physics of manganites: structure and transport’, Rev. Mod. Phys., 2001, 73, pp. 583628.
    7. 7)
      • 7. Gao, H., Staruch, M., Jain, M., et al: ‘Structure and magnetic properties of three-dimensional La1−xSrxMnO3 nano films on ZnO nanorod arrays’, Appl. Phys. Lett., 2011, 98, p. 123105 (13).
    8. 8)
      • 8. Ahmed, M.I., Habib, A., Javaid, S.S.: ‘Perovskite solar cells: potentials, challenges, and opportunities’, Int. J. Photo Energy, 2015, 2015, p. 592308 (113).
    9. 9)
      • 9. Kurtz, J.: ‘The structural, magnetic and electrical behavior of (110) oriented LSMO’ (University of Twente, Netherlands, 2009).
    10. 10)
      • 10. Hoch, M.J.R., Kuhns, P.L., Moulton, W.G., et al: ‘Disorder and double-exchange spin dynamics in La0.7Sr0.3MnO3 and La0.7Sr0.3CoO3 from NMR hyperfine couplings’, Phys. Rev. B, 2007, 75, p. 104421 (19).
    11. 11)
      • 11. Martino, M., Cesaria, M., Caricato, A.P., et al: ‘La0.7Sr0.3MnO3 thin films deposited by pulsed laser ablation for spintronic applications’, Phys. Status Solidi A, 2011, 8, pp. 18171820.
    12. 12)
      • 12. Shinde, K.P., Pawar, S.S., Deshpande, N.G., et al: ‘Magnetocaloric effect in LSMO synthesized by combustion route’, Mater. Chem. Phys., 2011, 129, pp. 180182.
    13. 13)
      • 13. Channu, V.S.R., Holze, R., Walker, E.H.: ‘Synthesis and characterization of La0.8Sr0.2MnO3δ nanostructures for solid oxide fuel cells’, New J. Glass Ceram., 2013, 3, pp. 2933.
    14. 14)
      • 14. Guo, H., Wang, J., He, X., et al: ‘The origin of oxygen vacancies controlling La2/3Sr1/3MnO3 electronic and magnetic properties’, Adv. Mater. Interfaces, 2016, 3, p. 1500753.
    15. 15)
      • 15. Kale, S.N., Arora, S., Bhayani, K.R., et al: ‘Cerium doping and stoichiometry control for biomedical use of La0.7Sr0.3MnO3 nanoparticles: microwave absorption and cytotoxicity study’, Nanomed. Nanotechnol. Biol. Med., 2006, 2, pp. 217221.
    16. 16)
      • 16. Tiwari, A., Jin, C., Kumar, D., et al: ‘Rectifying electrical characteristics of La0.7Sr0.3MnO3/ZnO heterostructure’, Appl. Phys. Lett., 2003, 83, pp. 17731775.
    17. 17)
      • 17. Jin, K.X., Zhao, S.G., Chen, C.L., et al: ‘Ultraviolet photovoltage characteristics in ZnO/La0.7Sr0.3MnO3 heterostructure’, Appl. Phys., 2009, 42, p. 015001 (14).
    18. 18)
      • 18. Dai, H.Y., Wang, B., Zhang, M., et al: ‘Growth of La0.7Sr0.3MnO3 films on Si(0 0 1) using SrMnO3 template layer’, Elsevier, 2006, 80, pp. 914917.
    19. 19)
      • 19. Janotti, A., Jalan, B., Stemmer, S., et al: ‘Effects of doping on the lattice parameter of SrTiO3’, Appl. Phys. Lett., 2012, 100, p. 262104 (14).
    20. 20)
      • 20. Bansal, S., Aryal, P.: ‘Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations’. IEEE 43rd Photovoltaic Specialists Conf., 2016, pp. 07470750.
    21. 21)
      • 21. Zhou, W.J., Jin, K.J., Guo, H.Z., et al: ‘Significant enhancement of photovoltage in artificially designed perovskite oxide structures’, Appl. Phys. Lett., 2014, 105, p. 131109 (16).
    22. 22)
      • 22. Lin, H.B., Jin, K.J., Huang, Y.H., et al: ‘Picosecond photoelectric characteristic in La0.7Sr0.3MnO3/Si p-n junctions’, Appl. Phys. Lett., 2005, 86, p. 241915 (13).
    23. 23)
      • 23. Khoshsirat, N., Yunus, N.A.M.: ‘Numerical simulation of CIGS thin film solar cells using SCAPS-1D’. IEEE Conf. Sustainable Utilization and Development in Engineering and Technology, 2013, pp. 6367.
    24. 24)
      • 24. Xu, Y., Gong, T., Munday, J.N.: ‘The generalized Shockley–Queisser limit for nanostructured solar cells’, Sci. Rep., 2015, 5, p. 13536.
    25. 25)
      • 25. Mostefaoui, M., Mazar, H., Khelifi, S., et al: ‘Simulation of high efficiency CIGS solar cells with SCAPS-1D software’, Energy Procedia, 2015, 74, pp. 736744.
    26. 26)
      • 26. Lin, P., Lin, L., Yu, J., et al: ‘Numerical simulation of Cu2ZnSnS4 based solar cells with In2S3Buffer layers by SCAPS-1D’, J. Appl. Sci. Eng., 2014, 17, pp. 383390.
    27. 27)
      • 27. Choi, A.T., Jiang, L., Lee, S., et al: ‘High rectification and photovoltaic effect in oxide nano-junctions’, New J. Phys., 2012, 14, p. 093056 (110).
    28. 28)
      • 28. Lee, S.W., Kim, S., Bae, S., et al: ‘UV degradation and recovery of perovskite solar cells’, Sci. Rep., 2016, 6, p. 38150 (17).
    29. 29)
      • 29. Benmir, A., Aida, M.S.: ‘Analytical modeling and simulation of CIGS solar cells’, Energy Procedia, 2013, 36, pp. 618627.
    30. 30)
      • 30. Javad, M., Mohammad, H., Hossein, Z.M., et al: ‘Modeling of optical losses in perovskite solar cells’, Superlattices Microstruct., 2016, 97, pp. 424428.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2017.0135
Loading

Related content

content/journals/10.1049/iet-opt.2017.0135
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address