Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Q-switched and mode-locked ytterbium-doped fibre lasers with Sb2Te3 topological insulator saturable absorber

Q-switched and mode-locked fibre lasers have been successfully demonstrated in ytterbium-doped fibre laser cavity by taking an advantage of the optical absorption of antimony telluride (Sb2Te3) material. The Sb2Te3 was embedded into polyvinyl alcohol to function as a saturable absorber (SA). A Q-switching pulses train was obtained by incorporating the SA into the laser ring cavity configured with 3 dB coupler. The Q-switching pulse repetition rate increases from 24.4 to 55 kHz as the pump power is increased from the threshold of 75.4–96.2 mW. The maximum pulse energy of 252.6 nJ is obtained at 82.3 mW pump power. On the other hand, by changing the output coupler to 10 dB coupler, a stable self-started mode-locking operation was then generated at pump power range from 47.8 to 89.4 mW with a fixed repetition rate of 24.2 MHz. At 89.4 mW pump power, the maximum output power and pulse energy are obtained to be around 18.6 mW and 0.8 nJ, respectively. The authors results display that the Sb2Te3 material could also be developed as an effective SA for both Q-switched and mode-locked fibre lasers.

References

    1. 1)
      • 27. Hisyam, M., Rusdi, M., Latiff, A., et al: ‘Generation of mode-locked ytterbium doped fiber ring laser using few-layer black phosphorus as a saturable absorber’, IEEE J. Sel. Top. Quantum Electron., 2016, PP, (99), pp. 11.
    2. 2)
      • 3. Keller, U., Weingarten, K.J., Kartner, F.X., et al: ‘Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers’, IEEE J. Sel. Top. Quantum Electron., 1996, 2, (3), pp. 435453.
    3. 3)
      • 22. Sotor, J., Sobon, G., Abramski, K.M.: ‘Sub-130 Fs mode-locked Er-doped fiber laser based on topological insulator’, Opt. Express, 2014, 22, (11), pp. 1324413249.
    4. 4)
      • 26. Luo, Z., Huang, Y., Zhong, M., et al: ‘1-, 1.5-, and 2-Mm fiber lasers Q-switched by a broadband few-layer Mos 2 saturable absorber’, J. Lightwave Technol., 2014, 32, (24), pp. 40774084.
    5. 5)
      • 1. Stetser, D., DeMaria, A.: ‘Optical spectra of ultrashort optical pulses generated by mode-locked glass: Nd lasers’, Appl. Phys. Lett., 1966, 9, (3), pp. 118120.
    6. 6)
      • 25. Bogusławski, J., Soboń, G., Tarnowski, K., et al: ‘All-polarization-maintaining-fiber laser Q-switched by evanescent field interaction with Sb2te3 saturable absorber’, Opt. Eng., 2016, 55, (8), pp. 081316081316.
    7. 7)
      • 9. Zhu M., Wu, L., Rao F, , Song, Z., et al: ‘Uniform Ti-doped Sb2te3 materials for high-speed phase change memory applications’, Appl. Phys. Lett., 2014, 104, (5), p. 053119.
    8. 8)
      • 18. Lee, J., Jung, M., Koo, J., et al: ‘Passively Q-switched 1.89-Mm fiber laser using a bulk-structured Bi 2 Te 3 topological insulator’, IEEE J. Sel. Top. Quantum Electron., 2015, 21, (1), pp. 3136.
    9. 9)
      • 17. Yu, Z., Song, Y., Tian, J., et al: ‘High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi 2 Se 3 film’, Opt. Express, 2014, 22, (10), pp. 1150811515.
    10. 10)
      • 5. Al-Masoodi, A., Ismail, M., Ahmad, F., et al: ‘Q-switched Yb-doped fiber laser operating at 1073 Nm using a carbon nanotubes saturable absorber’, Microw. Opt. Technol. Lett., 2014, 56, (8), pp. 17701773.
    11. 11)
      • 16. Chen, S., Chen, Y., Wu, M., et al: ‘Stable $ Q $-switched erbium-doped fiber laser based on topological insulator covered microfiber’, IEEE Photonics Technol. Lett., 2014, 26, (10), pp. 987990.
    12. 12)
      • 11. Lee, J., Koo, J., Jhon, Y.M., et al: ‘A femtosecond pulse erbium fiber laser incorporating a saturable absorber based on bulk-structured Bi 2 Te 3 topological insulator’, Opt. Express, 2014, 22, (5), pp. 61656173.
    13. 13)
      • 21. Al-Masoodi, A.H., Ahmad, F., Ahmed, M.H., et al: ‘Q-switched ytterbium-doped fiber laser with topological insulator-based saturable absorber’, Opt. Eng., 2017, 56, (5), pp. 056103056103.
    14. 14)
      • 2. Gomes, L.A., Orsila, L., Jouhti, T., et al: ‘Picosecond SESAM-based ytterbium mode-locked fiber lasers’, IEEE J. Sel. Top. Quantum Electron., 2004, 10, (1), pp. 129136.
    15. 15)
      • 10. Tian W., Yu, W., Shi J, , Wang, Y.: ‘The property, preparation and application of topological insulators: a review’, Materials, 2017, 10, (7), p. 814.
    16. 16)
      • 15. Kowalczyk, M., Bogusławski, J., Zybała, R., et al: ‘Sb 2 Te 3-deposited D-shaped fiber as a saturable absorber for mode-locked Yb-doped fiber lasers’, Opt. Mater. Express, 2016, 6, (7), pp. 22732282.
    17. 17)
      • 19. Haris, H., Harun, S., Muhammad, A., et al: ‘Passively Q-switched erbium-doped and ytterbium-doped fibre lasers with topological insulator bismuth selenide (Bi 2 Se 3) as saturable absorber’, Opt. Laser Technol., 2017, 88, pp. 121127.
    18. 18)
      • 12. Chen, Y., Zhao, C., Chen, S., et al: ‘Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser’, IEEE J. Sel. Top. Quantum Electron., 2014, 20, (5), pp. 315322.
    19. 19)
      • 4. Yamashita, S., Inoue, Y., Maruyama, S., et al: ‘Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers’, Opt. Lett., 2004, 29, (14), pp. 15811583.
    20. 20)
      • 20. Luo, Z., Huang, Y., Weng, J., et al: ‘1.06 μm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi 2 Se 3 as a saturable absorber’, Opt. Express, 2013, 21, (24), pp. 2951629522.
    21. 21)
      • 24. Sotor, J., Sobon, G., Grodecki, K., et al: ‘Mode-locked erbium-doped fiber laser based on evanescent field interaction with Sb2te3 topological insulator’, Appl. Phys. Lett., 2014, 104, (25), p. 251112.
    22. 22)
      • 6. Sun, Z., Hasan, T., Torrisi, F., et al: ‘Graphene mode-locked ultrafast laser’, ACS Nano, 2010, 4, (2), pp. 803810.
    23. 23)
      • 7. Popa, D., Sun, Z., Torrisi, F., et al: ‘Sub 200 Fs pulse generation from a graphene mode-locked fiber laser’, Appl. Phys. Lett., 2010, 97, (20), p. 203106.
    24. 24)
      • 14. Yan, P., Lin, R., Ruan, S., et al: ‘A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film’, Opt. Express, 2015, 23, (1), pp. 154164.
    25. 25)
      • 8. Sapkota, Y.R., Alkabsh, A., Walber, A., et al: ‘Optical evidence for blue shift in topological insulator bismuth selenide in the few-layer limit’, Appl. Phys. Lett., 2017, 110, (18), p. 181901.
    26. 26)
      • 23. Wang C., Li, Y., Ding G, , Xie, X., et al: ‘Preparation and characterization of graphene oxide/poly (vinyl alcohol) composite nanofibers via electrospinning’, J. Appl. Polym. Sci., 2013, 127, (4), pp. 30263032.
    27. 27)
      • 13. Liu, H., Zheng, X.-W., Liu, M., et al: ‘Femtosecond pulse generation from a topological insulator mode-locked fiber laser’, Opt. Express, 2014, 22, (6), pp. 68686873.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2017.0134
Loading

Related content

content/journals/10.1049/iet-opt.2017.0134
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address