Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Tamm plasmons for efficient interaction of telecom wavelength photons and quantum dots

The authors present here designs for tuneable confined Tamm plasmons (CTPs) resonant at 1.3 μm, consisting of an AlAs/GaAs distributed Bragg reflector and gold disc. Using numerical methods they explored the effect of disc diameter on the CTP resonance and position of a dipole source (modelling a quantum dot) on emission through the disc. They found decreasing disc diameter resulted in a blue-shifted fundamental mode and that a dipole positioned at the centre of the disc emitted with an angular distribution that collected 90% of the transmitted power within a numerical aperture of 0.7. They also explore the Purcell enhancement under the CTP as a function of dipole position.

References

    1. 1)
      • 19. Braun, T., Baumann, V., Iff, O., et al: ‘Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode’, Appl. Phys. Lett., 2015, 106, (4), p. 41113.
    2. 2)
      • 12. Gazzano, O., De Vasconcellos, S.M., Gauthron, K., et al: ‘Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission’, Phys. Rev. Lett., 2011, 107, (24), pp. 48.
    3. 3)
      • 22. Johnson, P.B., Christy, R.-W.: ‘Optical constants of the noble metals’, Phys. Rev. B, 1972, 6, (12), p. 4370.
    4. 4)
      • 10. Gubaydullin, A.R., Symonds, C., Bellessa, J., et al: ‘Enhancement of spontaneous emission in Tamm plasmon structures’, Sci. Rep., 2017, 7, (1), p. 9014.
    5. 5)
      • 15. Kuhlmann, A.V., Houel, J., Ludwig, A., et al: ‘Charge noise and spin noise in a semiconductor quantum device’, Nat. Phys., 2013, 9, (9), pp. 570575.
    6. 6)
      • 20. Lumerical Solutions, Inc.’. Available at http://www.lumerical.com/tcad-products/fdtd/.
    7. 7)
      • 13. Feng, F., Ouaret, K., Portalupi, S., et al: ‘Confined visible optical Tamm states’, J. Electron. Mater., 2016, 45, (5), pp. 23072310.
    8. 8)
      • 23. Fern, R.E., Onton, A.: ‘Refractive index of AlAs’, J. Appl. Phys., 1971, 42, (9), pp. 34993500.
    9. 9)
      • 17. Symonds, C., Lheureux, G., Hugonin, J.P., et al: ‘Confined Tamm plasmon lasers’, Nano Lett., 2013, 13, pp. 31793184.
    10. 10)
      • 6. Clarke, E., Howe, P., Taylor, M., et al: ‘Persistent template effect in InAs/GaAs quantum dot bilayers’, J. Appl. Phys., 2010, 107, (11), pp. 16.
    11. 11)
      • 18. Gazzano, O., De Vasconcellos, S.M., Gauthron, K., et al: ‘Single photon source using confined Tamm plasmon modes’, Appl. Phys. Lett., 2012, 100, (23), pp. 1014.
    12. 12)
      • 14. Lheureux, G., Azzini, S., Symonds, C., et al: ‘Polarization-controlled confined Tamm plasmon lasers’, ACS Photonics, 2015, 2, (7), pp. 842848.
    13. 13)
      • 25. Chen, Y., Zhang, D., Zhu, L., et al: ‘Effect of metal film thickness on Tamm plasmon-coupled emission’, Phys. Chem. Chem. Phys., 2014, 16, (46), pp. 2552325530.
    14. 14)
      • 2. DiVincenzo, D.P., IBM: ‘The physical implementation of quantum computation’, Fortschr. Phys., 2000, 48, pp. 771793.
    15. 15)
      • 1. Xiao, M., Wu, L.A., Kimble, H.J.: ‘Precision measurement beyond the shot-noise limit’, Phys. Rev. Lett., 1987, 59, (3), pp. 278281.
    16. 16)
      • 3. Gisin, N., Ribordy, G., Tittel, W., et al: ‘Quantum cryptography’, Rev. Mod. Phys., 2002, 74, (1), pp. 145195.
    17. 17)
      • 24. Skauli, T., Kuo, P.S., Vodopyanov, K.L., et al: ‘Improved dispersion relations for GaAs and applications to nonlinear optics’, J. Appl. Phys., 2003, 94, (10), pp. 64476455.
    18. 18)
      • 8. Barnes, W.L., Baumann, V., Iff, O., et al: ‘Solid-state single photon sources: light collection strategies’, Eur. Phys. J. D, 2002, 18, (2), pp. 197210.
    19. 19)
      • 5. De Greve, K., Yu, L., McMahon, P.L., et al: ‘Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength’, Nature, 2012, 491, (7424), pp. 421425.
    20. 20)
      • 7. Kaizu, T., Matsumura, T., Kita, T.: ‘Broadband control of emission wavelength of InAs/GaAs quantum dots by GaAs capping temperature’, J. Appl. Phys., 2015, 118, (15), pp. 17.
    21. 21)
      • 9. Kaliteevski, M., Iorsh, I., Brand, S., et al: ‘Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror’, Phys. Rev. B, Condens. Matter Mater. Phys., 2007, 76, (16), pp. 15.
    22. 22)
      • 11. Sasin, M.E., Seisyan, R.P., Kaliteevski, M., et al: ‘Tamm plasmon polaritons: slow and spatially compact light’, Appl. Phys. Lett., 2008, 92, (25), pp. 14.
    23. 23)
      • 21. Yeh, P., Yariv, A., Cho, A.Y.: ‘Optical surface waves in periodic layered media’, Appl. Phys. Lett., 1978, 32, (2), pp. 104105.
    24. 24)
      • 16. Androvitsaneas, P., Young, A.B., Schneider, C., et al: ‘Charged quantum dot micropillar system for deterministic light-matter interactions’, Phys. Rev. B, Condens. Matter Mater. Phys., 2016, 93, (24), pp. 15.
    25. 25)
      • 4. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al: ‘The security of practical quantum key distribution’, Rev. Mod. Phys., 2009, 81, (3), pp. 13011350.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2017.0076
Loading

Related content

content/journals/10.1049/iet-opt.2017.0076
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address