access icon openaccess Photovoltaic–thermoelectric temperature control using a closed-loop integrated cooler

The closed-loop integrated cooler (CLIC) is a novel technique deployed on experimental apparatus to accurately measure, monitor and control the temperature of optoelectronic devices. Demonstrated here within a concentrator photovoltaic–thermoelectric (CPV–TE) hybrid device, the thermoelectric module was used as a solid-state sensor and heat pump in order to control the operational temperature for a triple-junction solar cell. The technique was used to achieve stable, reproducible and repeatable standard test conditions of 25°C cell temperature, with 1000 W/m2 irradiance and AM1.5G spectrum. During testing with secondary optical element (SOE) optics in a solar simulator, the CLIC enabled accurate temperature control of the CPV cell. This would otherwise be unfeasible due to the spectral, reflective and diffusive effects of the SOE optics. The CLIC was used to obtain temporal and spatial constant temperature of the CPV-TE hybrid receiver during current–voltage measurement. This method highlights the future potential of the CLIC for accurate temperature control of optoelectronic devices both during testing and in future semiconductor device applications where temperature control is essential to performance or lifetime.

Inspec keywords: III-V semiconductors; temperature control; thermoelectric devices; thermophotovoltaic cells

Other keywords: closed-loop integrated cooler; photovoltaic-thermoelectric temperature control; concentrator photovoltaic-thermoelectric hybrid device; thermoelectric module; current-voltage measurement; SOE; CLIC; solid-state sensor; CPV-TE; secondary optical element

Subjects: Photoelectric conversion; solar cells and arrays; Servo and control devices; Thermal instruments and techniques; Other direct energy conversion

References

    1. 1)
      • 19. Sweet, T.K., Rolley, M., Min, G., et al: ‘Scalable solar thermoelectrics and photovoltaics (SUNTRAP)’. AIP Conf. Proc., 2016.
    2. 2)
      • 3. King, R.R., Law, D.C., Edmondson, K.M., et al: ‘40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells’, Appl. Phys. Lett., 2007, 90, (18), p. 183516.
    3. 3)
      • 8. Rowe, D.M.: ‘CRC handbook of thermoelectrics’ (CRC Press, 1995).
    4. 4)
      • 24. Siefer, G., Bett, A.W.: ‘Analysis of temperature coefficients for III–V multi-junction concentrator cells’, Prog. Photovolt. Res. Appl., 2014, 22, (5), pp. 515524.
    5. 5)
      • 12. Xu, X., Zhou, S., Meyers, M.M., et al: ‘Performance analysis of a combination system of concentrating photovoltaic/thermal collector and thermoelectric generators’, J. Electron. Packag., 2014, 136, (4), p. 041004.
    6. 6)
      • 25. Dupré, O., Vaillon, R., Green, M.A.: ‘Physics of the temperature coefficients of solar cells’, Sol. Energy Mater. Sol. Cells, 2015, 140, pp. 92100.
    7. 7)
      • 17. Cui, T., Xuan, Y., Li, Q.: ‘Design of a novel concentrating photovoltaic–thermoelectric system incorporated with phase change materials’, Energy Convers. Manage., 2016, 112, pp. 4960.
    8. 8)
      • 7. Fernández, E.F., Siefer, G., Schachtner, M., et al: ‘Temperature coefficients of monolithic III-V triple-junction solar cells under different spectra and irradiance levels’, AIP Conf. Proc., 2012, 1477, (1), pp. 189193.
    9. 9)
      • 5. Talavera, D.L., Pérez-Higueras, P., Almonacid, F., et al: ‘A worldwide assessment of economic feasibility of HCPV power plants: profitability and competitiveness’, Energy, 2017, 119, pp. 408424.
    10. 10)
      • 4. Shanks, K., Senthilarasu, S., Mallick, T.K.: ‘Optics for concentrating photovoltaics: trends, limits and opportunities for materials and design’, Renew. Sustain. Energy Rev., 2016, 60, pp. 394407.
    11. 11)
      • 22. Rolley, M.H., Sweet, T.K.N., Min, G.: ‘In-situ thermoelectric temperature monitoring and ‘closed-loop integrated control’ system for concentrator photovoltaic-thermoelectric hybrid receivers’, AIP Conf. Proc., 2017, 1881, (1), p. 100001.
    12. 12)
      • 1. Dimroth, F., Tibbits, T.N.D., Niemeyer, M., et al: ‘Four-junction wafer-bonded concentrator solar cells’, IEEE J. Photovolt., 2016, 6, (1), pp. 343349.
    13. 13)
      • 21. Rogalski, A., Chrzanowski, K.: ‘Infrared devices and techniques’, 2002, 10, (2), p. 111136.
    14. 14)
      • 6. Fairley, P.: ‘New scientist gamechangers: energy’ (New Scientist, 2015).
    15. 15)
      • 18. Beeri, O., Rotem, O., Hazan, E., et al: ‘Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: experimental realization and modeling’, J. Appl. Phys., 2015, 118, (11), p. 115104.
    16. 16)
      • 14. Zhang, J., Xuan, Y., Yang, L.: ‘A novel choice for the photovoltaic–thermoelectric hybrid system: the perovskite solar cell’, Int. J. Energy Res., 2016, 40, pp. 14001409, doi: 10.1002/er.3532..
    17. 17)
      • 20. Sweet, T.K.N., Rolley, M.H., Min, G., et al: ‘Novel hybrid III:V concentrator photovoltaic-thermoelectric receiver designs’, AIP Conf. Proc., 2017, 1881, (1), p. 080009.
    18. 18)
      • 9. Goldsmid, H.J., Sheard, A.R., Wright, D.A.: ‘The performance of bismuth telluride thermojunctions’, Br. J. Appl. Phys., 1958, 9, (9), p. 365.
    19. 19)
      • 26. Singh, P., Ravindra, N.M.: ‘Temperature dependence of solar cell performance – an analysis’, Sol. Energy Mater. Sol. Cells, 2012, 101, pp. 3645.
    20. 20)
      • 2. King, R.R., Bhusari, D., Larrabee., , et al: ‘Solar cell generations over 40% efficiency’, Prog. Photovolt. Res. Appl., 2012, 20, (6), pp. 801815.
    21. 21)
      • 23. Kinsey, G.S., Hebert, P., Barbour, K.E., et al: ‘Concentrator multijunction solar cell characteristics under variable intensity and temperature’, Prog. Photovolt. Res. Appl., 2008, 16, (6), pp. 503508.
    22. 22)
      • 11. Enright, R., Lei, S., Cunningham, G., et al: ‘Integrated thermoelectric cooling for silicon photonics’, ECS J. Solid State Sci. Technol., 2017, 6, (3), pp. 3103N3112.
    23. 23)
      • 15. Fisac, M., Villasevil, F.X., López, A.M.: ‘High-efficiency photovoltaic technology including thermoelectric generation’, J. Power Sources, 2014, 252, pp. 264269.
    24. 24)
      • 10. Bell, L.E.: ‘Cooling, heating, generating power, and recovering waste heat with thermoelectric systems’, Science, 2008, 321, (5895), pp. 14571461.
    25. 25)
      • 13. Zhou, Z., Yang, J., Jiang, Q., et al: ‘Large improvement of device performance by a synergistic effect of photovoltaics and thermoelectrics’, Nano Energy, 2016, 22, pp. 120128.
    26. 26)
      • 16. Rezania, A., Sera, D., Rosendahl, L.: ‘Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe’, Renew. Energy, 2016, 99, pp. 127135.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2017.0072
Loading

Related content

content/journals/10.1049/iet-opt.2017.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading