access icon free Dynamical characteristics of nano-lasers subject to optical injection and phase conjugate feedback

The dynamics of nano-lasers has been analysed using rate equations which include the Purcell cavity-enhanced spontaneous emission factor F and the spontaneous emission coupling factor β. It is shown that when subject to optical injection and phase conjugate feedback, nano-lasers may exhibit remarkably stable small-amplitude oscillations with frequencies of order 300 GHz. Critically, it is established that such oscillations persist when the effects of noise are taken into account. The appearance of such high-frequency oscillations is associated with the effective reduction of the carrier lifetime for larger values of the Purcell factor, F, and spontaneous coupling factor, β. The effects of the feedback distance and bias currents are also considered. As the optical injection strength increases for fixed phase conjugate feedback and relatively short feedback distances, the nano-laser displays periodic dynamics and then enters stable locking. As the feedback distance increases, the quasi-periodic dynamics dominates. Increased bias current can also induce quasi-periodic behaviour albeit this may be ameliorated by reducing the strength of the phase conjugate feedback.

Inspec keywords: nanophotonics; spontaneous emission; laser noise; laser beams; laser feedback; optical phase conjugation; laser cavity resonators; semiconductor lasers

Other keywords: spontaneous emission coupling factor; semiconductor laser; nano-lasers; frequency 300 GHz; periodic dynamics; bias currents; Purcell cavity-enhanced spontaneous emission factor; feedback distance; carrier lifetime; optical injection; stable small-amplitude oscillations; stable locking; high-frequency oscillations; quasiperiodic dynamics; rate equations; dynamical characteristics; phase conjugate feedback

Subjects: Nanophotonic devices and technology; Laser beam characteristics and interactions; Laser beam interactions and properties; Design of specific laser systems; Laser resonators and cavities; Optical phase conjugation; Optical phase conjugation and multiwave mixing; Laser resonators and cavities; Lasing action in semiconductors; Nanophotonic devices and technology; Semiconductor lasers

References

    1. 1)
      • 22. Kumar, P., Grillot, F.: ‘Control of dynamical instability in semiconductor quantum nanostructures diode lasers: role of phase-amplitude coupling’, Eur. Phys. J. Spec. Top., 2013, 222, (3-4), pp. 813820.
    2. 2)
      • 4. Hill, M.T., Marell, M., Leong, E.S.P., et al: ‘Lasing in metal-insulator-metal sub-wavelength plasmonics waveguides’, Opt. Express, 2009, 17, (13), pp. 1110711112.
    3. 3)
      • 38. Mercier, É., Wolfersberger, D., Sciamanna, M.: ‘Bifurcation to chaotic low-frequency fluctuations in a laser diode with phase-conjugate feedback’, Opt. Lett., 2014, 39, (13), pp. 40214024.
    4. 4)
      • 20. Han, H., Shore, K.A.: ‘Dynamics and stability of mutually coupled nano-lasers’, IEEE J. Quantum Electron., 2016, 52, (11), p. 2000306.
    5. 5)
      • 16. Sattar, Z.A., Shore, K.A.: ‘Analysis of the direct modulation response of nanowire lasers’, IEEE. J. Lightwave Technol., 2015, 33, (14), pp. 30283033.
    6. 6)
      • 39. Karsaklian, A., Bosco, D., Wolfersberger, D., et al: ‘Super-harmonic self-pulsations from a time-delayed phase-conjugate optical system’, Appl. Phys. Lett., 2014, 105, pp. 081101-1081101-4.
    7. 7)
      • 1. Pelton, M., Vuckoviá, J., Solomon, G., et al: ‘Efficient source of a single photons: a single quantum dot in a micropost microcavity’, Physica E, 2003, 17, pp. 564567.
    8. 8)
      • 25. Virte, M., Dal Bosco, A.K., Wolfersberger, D., et al: ‘Chaos crisis and bistability of self-pulsing dynamics in a laser diode with phase-conjugate feedback’, Phys. Rev. A, 2011, 84, p. 043836.
    9. 9)
      • 12. Ding, K., Hill, M.T., Liu, Z.C., et al: ‘Record performance of electrical injection subwavelength metallic-cavity semiconductor lasers at room temperature’, Opt. Express, 2013, 21, (4), pp. 47284733.
    10. 10)
      • 5. Oulton, R.F., Sorger, V.J., Zentgraf, T., et al: ‘Plasmon lasers at deep subwavelength scale’, Nature, 2009, 461, pp. 629632.
    11. 11)
      • 30. Langley, L.N., Shore, K.A.: ‘Intensity noise and linewidth characteristics of laser diodes with phase conjugate optical feedback’, IEE. Proc. Optoelectron., 1994, 141, (2), pp. 103108.
    12. 12)
      • 31. Vahala, K., Kyuma, K., Yariv, A., et al: ‘Narrow linewidth single frequency semiconductor laser with a phase conjugate external cavity mirror’, Appl. Phys. Lett., 1986, 49, pp. 15631565.
    13. 13)
      • 41. Coldren, L.A., Corzine, S.W.: ‘Diode Lasers and photonic integrated circuits’ (Wiley, New York, NY, USA, 1995).
    14. 14)
      • 34. Andersen, O.K., Fischer, A.P.A., Lane, I.C., et al: ‘Experimental stability diagram of a diode laser subject to weak phase-conjugate feedback from a rubidium vapor cell’, IEEE J. Quantum Electron., 1999, 35, (4), p. 577.
    15. 15)
      • 29. MrCarthy, N., Gay, D.: ‘Noise reduction in an argon laser with a phase conjugating external cavity’, Opt. Lett., 1991, 16, pp. 10041006.
    16. 16)
      • 40. Weicker, L., Erneux, T., Wolfersberger, D., et al: ‘Laser diode nonlinear dynamics from a filtered phase-conjugate optical feedback’, Phys. Rev. E, 2015, 92, (2), pp. 022906-102022906.
    17. 17)
      • 6. Yu, K., Lakhani, A., Wu, M.C.: ‘Subwavelength metal-optic semiconductor nanopatch lasers’, Opt. Express, 2010, 18, (9), pp. 87908799.
    18. 18)
      • 2. Reitzensteinm, S., Heindel, T., Kistner, C., et al: ‘Low threshold electrically pumped quantum dot-micropillar lasers’, Appl. Phys. Lett., 2008, 93, (6), pp. 061104-1061104-3.
    19. 19)
      • 13. Suhr, T., Gregerson, N., Yvind, Y., et al: ‘Modulation response of nanoLEDs and nanolasers exploiting Purcell enhanced spontaneous emission’, Opt. Express, 2010, 18, (11), pp. 1123011241.
    20. 20)
      • 42. Chang, S.W.: ‘Dressed linewidth enhancement factors in small semiconductor lasers’, Opt. Express, 2012, 20, (15), pp. 1645016470.
    21. 21)
      • 10. Ding, K., Ning, C.Z.: ‘Metallic sub-wavelength-cavity semiconductor nanolasers’, Light, Sci. Appl., 2012, 1, (7), p. 20.
    22. 22)
      • 24. Sun, C., Liu, D., Xiong, B., et al: ‘Modulation charecteristics enhancement of monolithically integrated laser diodes under mutual injection locking’, IEEE J. Sel. Top. Quantum Electron., 2015, 21, (6), p. 1802008.
    23. 23)
      • 14. Gu, Q., Slutsky, B., Vallini, F., et al: ‘Purcell effect in sub-wavelength semiconductor lasers’, Opt. Express, 2013, 21, (13), pp. 1560315617.
    24. 24)
      • 23. Lau, E.K., Wong, L.H., Wu, M.C.: ‘Enhanced modulation characteristics of optical injection-locked lasers: a tutorial’, IEEE J. Sel. Top. Quantum Electron., 2009, 15, (3), pp. 618633.
    25. 25)
      • 17. Sattar, Z.A., Shore, K.A.: ‘External optical feedback effects in semiconductor nano-lasers’, IEEE J. Sel. Top. Quantum Electron., 2015, 21, (6), p. 1800106.
    26. 26)
      • 11. Gao, H., Fu, A., Andrews, S.C., et al: ‘Cleaved-coupled nanowire lasers’, Proc. Natl. Acad. Sci., 2013, 110, (3), pp. 865869.
    27. 27)
      • 7. Ning, C.Z.: ‘Semiconductor nanolasers’, Phys. Status Solidi B, 2010, 247, p. 774.
    28. 28)
      • 3. Gu, Q., Shane, J., Vallini, F., et al: ‘Amorphous Al2O3 shield for thermal management in electrically pumped metallo-dielectric nanolasers’, IEEE J. Quantum Electron., 2014, 50, (7), pp. 499509.
    29. 29)
      • 36. Lawrence, J.S., Kane, D.M.: ‘Contrasting conventional optical and phase-conjugate feedback in laser diodes’, Phys. Rev. A., 2001, 63, pp. 033805-1033805-10.
    30. 30)
      • 37. Karsaklian Dal Bosco, A., Wolfersberger, D., Sciamanna, M.: ‘Extreme events in time-delayed nonlinear optics’, Opt. Lett., 2013, 38, (5), pp. 703705.
    31. 31)
      • 33. Agrawal, G.P., Klaus, J.T.: ‘Effect of phase-conjugate feedback on semiconductor laser dynamics’, Opt. Lett., 1991, 16, pp. 13251327.
    32. 32)
      • 8. Ding, K., Liu, Z., Yin, L., et al: ‘Electrical injection, continuous wave operation of sub wavelength-metallic-cavity lasers at 260 K’, Appl. Phys. Lett., 2011, 98, (23), pp. 231108-1231108-3.
    33. 33)
      • 27. Van Tartwijk, G.H.M., Van Der Linden, H.J.C., Lenstra, D.: ‘Theory of a diode laser with phase conjugate feedback’, Opt. Lett., 1992, 17, pp. 15901592.
    34. 34)
      • 26. Agrawal, G.P., Gray, G.R.: ‘Effect of phase-conjugate feedback on the noise characteristics of semiconductor lasers’, Phys. Rev. A, 1992, 46, pp. 58905898.
    35. 35)
      • 35. Sciamanna, M., Shore, K.A.: ‘Physics and applications of laser diode chaos’, Nat. Photonics, 2015, 9, pp. 151162.
    36. 36)
      • 28. Langley, L.N., Shore, K.A.: ‘The effect of phase conjugate optical feedback on the intensity noise in laser diode’, Opt. Lett., 1993, 8, pp. 14321434.
    37. 37)
      • 21. Han, H., Shore, K.A.: ‘Modulated mutually coupled nano-lasers’, IEEE J. Quantum Electron., 2017, 53, (2), p. 2000208.
    38. 38)
      • 15. Gerard, J.M., Gayral, B.: ‘InAs quantum dots: artificial atoms for solid-state cavity-quantum electrodynamics’, Physica E, 2001, 9, (1), pp. 131139.
    39. 39)
      • 43. Langley, L.N., Shore, K.A.: ‘The effect of external optical feedback on timing jitter in modulated laser diodes’, J. Lightwave Technol., 1993, 11, pp. 434441.
    40. 40)
      • 18. Sattar, Z.A., Shore, K.A.: ‘Phase conjugate feedback effects on nano-lasers’, IEEE J. Quantum Electron., 2016, 52, (4), p. 1100108.
    41. 41)
      • 32. Ohtsu, M., Koshiishi, I., Teramachi, Y.: ‘A semiconductor laser as a stable phase conjugate mirror for linewidth reduction of another semiconductor laser’, Jpn. J. Appl. Phys., 1990, 29, pp. L2060L2062.
    42. 42)
      • 19. Sattar, Z.A., Shore, K.A.: ‘Optical injection effects in nano-lasers’, IEEE J. Quantum Electron., 2016, 52, (2), p. 1200108.
    43. 43)
      • 9. Chuang, S.L., Bimberg, D.: ‘Metal-cavity nanolasers’, IEEE Photon. J, 2011, 3, p. 288.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2017.0058
Loading

Related content

content/journals/10.1049/iet-opt.2017.0058
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading