access icon free Janus-configured all fibre laser Doppler velocimetry

Laser Doppler velocimetry (LDV) is a high precision instrument based on the Doppler effect of a laser, and it would greatly improve the performance of vehicle navigation and vehicle velocity metrology for its advantages. To reduce the measurement error produced by a jolt of a vehicle, a novel Janus-configured all fibre LDV is designed. The system comprising two independent interferometers is connected by 1.55 μm single mode fibre devices. Road experiments are carried out to compare the performances of the microwave radar, single beam LDV and Janus-configured LDV. The Janus-configured LDV is reliable to measure the velocity of the vehicle and its root-mean-square error is 0.0222 m/s, while it is 0.0284 m/s for the single beam LDV. The results validate that the designed LDV can achieve improved performance of vehicle velocity measurement.

Inspec keywords: road vehicles; Doppler measurement; fibre lasers; light interferometers; velocity measurement; laser velocimetry; measurement errors

Other keywords: root-mean-square error; single mode fibre devices; vehicle navigation; wavelength 1.55 mum; measurement error; Doppler effect; road experiments; vehicle velocity measurement; vehicle velocity metrology; high precision instrument; interferometers; Janus-configured all fibre laser Doppler velocimetry

Subjects: Metrological applications of lasers; Velocity, acceleration and rotation measurement; Metrological applications of lasers; Optical interferometry; Measurement and error theory; Measurement theory; Velocity, acceleration and rotation measurement

References

    1. 1)
      • 15. Mikami, O., Fujikawa, C.: ‘3-Beam laser Doppler velocimeter for 3-D velocity measurement’. 2016 IEEE 6th Int. Conf. on Photonics (ICP), 2016, pp. 13.
    2. 2)
      • 16. Cooper, K.B., Durden, S.L., Cochrane, C.J., et al: ‘Using FMCW Doppler radar to detect targets up to the maximum unambiguous range’, IEEE Geosci. Remote Sens. Lett., 2017, 14, (3), pp. 339343.
    3. 3)
      • 20. Johnson, J.M., Taylor, W.F., Shepherd, A.P., et al: ‘Laser-Doppler measurement of skin blood flow: comparison with plethysmography’, J. Appl. Physiol., 1984, 56, (3), pp. 798803.
    4. 4)
      • 14. Beuth, T., Fox, M., Stork, W.: ‘Influence of laser coherence on reference-matched laser Doppler velocimetry’, Appl. Opt., 2016, 55, (8), pp. 21042108.
    5. 5)
      • 3. Khalil, H., Kim, D., Nam, J., et al: ‘Accuracy and noise analyses of 3D vibration measurements using laser Doppler vibrometer’, Measurement, 2016, 94, pp. 883892.
    6. 6)
      • 13. Charrett, T. O. H., James, S. W., Tatam, R. P.: ‘Optical fibre laser velocimetry: a review’, Meas. Sci. Technol., 2012, 23, (3), p. 032001.
    7. 7)
      • 8. Nie, X., Zhou, J., Long, X.: ‘Velocity correction of the Janus configuration laser Doppler velocimeter’, Measurement, 2013, 46, (2), pp. 938941.
    8. 8)
      • 19. Hanssen, R. F.: ‘Radar interferometry: data interpretation and error analysis’ (Springer Science & Business Media, 2001).
    9. 9)
      • 7. Wang, J., Zhang, C., Feng, D., et al: ‘Laser velocimetry for vehicle based on Janus configuration’, Opt. Tech., 2009, 4, pp. 555557.
    10. 10)
      • 10. Kanai, T., Nunoya, N., Yamanaka, T., et al: ‘High-accuracy, sub-μs wavelength switching with thermal drift suppression in tunable distributed amplification (TDA-) DFB laser array’.  IEEE Optical Fiber Communication Conf. and Exposition and the National Fiber Optic Engineers Conf. (OFC/NFOEC), 2013, pp. 13.
    11. 11)
      • 2. Huffaker, R.M., Reveley, P.A.: ‘Solid-state coherent laser radar wind field measurement systems’, Pure Appl. Opt., 1998, 7, (4), p. 863.
    12. 12)
      • 4. Zhou, J., Nie, X., Lin, J.: ‘A novel laser Doppler velocimeter and its integrated navigation system with strapdown inertial navigation’, Opt. Laser Technol., 2014, 64, pp. 319323.
    13. 13)
      • 5. Gao, Y., Liu, S., Atia, M.M., et al: ‘INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm’, Sensors, 2015, 15, (9), pp. 2328623302.
    14. 14)
      • 11. Yin, Y., Xia, Y., Li, X., et al: ‘Narrow-linewidth and stable-frequency light source for laser cooling of magnesium fluoride molecules’, Appl. Phys. Express, 2015, 8, (9), p. 092701.
    15. 15)
      • 1. Bilbro, J.W.: ‘Atmospheric laser Doppler velocimetry: an overview’, Opt. Eng., 1980, 19, (4), pp. 194533194533.
    16. 16)
      • 9. Zhou, J., Huang, H., Long, X.: ‘A novel laser Doppler velocimeter’, J. Mod. Opt., 2010, 57, (21), pp. 21702176.
    17. 17)
      • 6. Pierrottet, D.F., Amzajerdian, F., Petway, L.B., et al: ‘Field demonstration of a precision navigation lidar system for space vehicles’. AIAA Guidance, Navigation, and Control (GNC) Conf., 2013, p. 4717-1-20.
    18. 18)
      • 12. Cook, S., Rosenband, T., Leibrandt, D. R.: ‘Laser-frequency stabilization based on steady-state spectral-hole burning in Eu3+:Y2SiO5’, Phys. Rev. Lett., 2015, 114, (25), p. 253902-1-5.
    19. 19)
      • 17. Jacobsen, E., Kootsookos, P.: ‘Fast, accurate frequency estimators’, IEEE Signal Process. Mag., 2007, 24, (3), pp. 123125.
    20. 20)
      • 18. Frehlich, R.: ‘Estimation of velocity error for Doppler lidar measurements’, J. Atmos. Ocean. Technol., 2001, 18, (10), pp. 16281639.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2017.0047
Loading

Related content

content/journals/10.1049/iet-opt.2017.0047
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading