Janus-configured all fibre laser Doppler velocimetry

Janus-configured all fibre laser Doppler velocimetry

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Laser Doppler velocimetry (LDV) is a high precision instrument based on the Doppler effect of a laser, and it would greatly improve the performance of vehicle navigation and vehicle velocity metrology for its advantages. To reduce the measurement error produced by a jolt of a vehicle, a novel Janus-configured all fibre LDV is designed. The system comprising two independent interferometers is connected by 1.55 μm single mode fibre devices. Road experiments are carried out to compare the performances of the microwave radar, single beam LDV and Janus-configured LDV. The Janus-configured LDV is reliable to measure the velocity of the vehicle and its root-mean-square error is 0.0222 m/s, while it is 0.0284 m/s for the single beam LDV. The results validate that the designed LDV can achieve improved performance of vehicle velocity measurement.


    1. 1)
      • 1. Bilbro, J.W.: ‘Atmospheric laser Doppler velocimetry: an overview’, Opt. Eng., 1980, 19, (4), pp. 194533194533.
    2. 2)
      • 2. Huffaker, R.M., Reveley, P.A.: ‘Solid-state coherent laser radar wind field measurement systems’, Pure Appl. Opt., 1998, 7, (4), p. 863.
    3. 3)
      • 3. Khalil, H., Kim, D., Nam, J., et al: ‘Accuracy and noise analyses of 3D vibration measurements using laser Doppler vibrometer’, Measurement, 2016, 94, pp. 883892.
    4. 4)
      • 4. Zhou, J., Nie, X., Lin, J.: ‘A novel laser Doppler velocimeter and its integrated navigation system with strapdown inertial navigation’, Opt. Laser Technol., 2014, 64, pp. 319323.
    5. 5)
      • 5. Gao, Y., Liu, S., Atia, M.M., et al: ‘INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm’, Sensors, 2015, 15, (9), pp. 2328623302.
    6. 6)
      • 6. Pierrottet, D.F., Amzajerdian, F., Petway, L.B., et al: ‘Field demonstration of a precision navigation lidar system for space vehicles’. AIAA Guidance, Navigation, and Control (GNC) Conf., 2013, p. 4717-1-20.
    7. 7)
      • 7. Wang, J., Zhang, C., Feng, D., et al: ‘Laser velocimetry for vehicle based on Janus configuration’, Opt. Tech., 2009, 4, pp. 555557.
    8. 8)
      • 8. Nie, X., Zhou, J., Long, X.: ‘Velocity correction of the Janus configuration laser Doppler velocimeter’, Measurement, 2013, 46, (2), pp. 938941.
    9. 9)
      • 9. Zhou, J., Huang, H., Long, X.: ‘A novel laser Doppler velocimeter’, J. Mod. Opt., 2010, 57, (21), pp. 21702176.
    10. 10)
      • 10. Kanai, T., Nunoya, N., Yamanaka, T., et al: ‘High-accuracy, sub-μs wavelength switching with thermal drift suppression in tunable distributed amplification (TDA-) DFB laser array’.  IEEE Optical Fiber Communication Conf. and Exposition and the National Fiber Optic Engineers Conf. (OFC/NFOEC), 2013, pp. 13.
    11. 11)
      • 11. Yin, Y., Xia, Y., Li, X., et al: ‘Narrow-linewidth and stable-frequency light source for laser cooling of magnesium fluoride molecules’, Appl. Phys. Express, 2015, 8, (9), p. 092701.
    12. 12)
      • 12. Cook, S., Rosenband, T., Leibrandt, D. R.: ‘Laser-frequency stabilization based on steady-state spectral-hole burning in Eu3+:Y2SiO5’, Phys. Rev. Lett., 2015, 114, (25), p. 253902-1-5.
    13. 13)
      • 13. Charrett, T. O. H., James, S. W., Tatam, R. P.: ‘Optical fibre laser velocimetry: a review’, Meas. Sci. Technol., 2012, 23, (3), p. 032001.
    14. 14)
      • 14. Beuth, T., Fox, M., Stork, W.: ‘Influence of laser coherence on reference-matched laser Doppler velocimetry’, Appl. Opt., 2016, 55, (8), pp. 21042108.
    15. 15)
      • 15. Mikami, O., Fujikawa, C.: ‘3-Beam laser Doppler velocimeter for 3-D velocity measurement’. 2016 IEEE 6th Int. Conf. on Photonics (ICP), 2016, pp. 13.
    16. 16)
      • 16. Cooper, K.B., Durden, S.L., Cochrane, C.J., et al: ‘Using FMCW Doppler radar to detect targets up to the maximum unambiguous range’, IEEE Geosci. Remote Sens. Lett., 2017, 14, (3), pp. 339343.
    17. 17)
      • 17. Jacobsen, E., Kootsookos, P.: ‘Fast, accurate frequency estimators’, IEEE Signal Process. Mag., 2007, 24, (3), pp. 123125.
    18. 18)
      • 18. Frehlich, R.: ‘Estimation of velocity error for Doppler lidar measurements’, J. Atmos. Ocean. Technol., 2001, 18, (10), pp. 16281639.
    19. 19)
      • 19. Hanssen, R. F.: ‘Radar interferometry: data interpretation and error analysis’ (Springer Science & Business Media, 2001).
    20. 20)
      • 20. Johnson, J.M., Taylor, W.F., Shepherd, A.P., et al: ‘Laser-Doppler measurement of skin blood flow: comparison with plethysmography’, J. Appl. Physiol., 1984, 56, (3), pp. 798803.

Related content

This is a required field
Please enter a valid email address