http://iet.metastore.ingenta.com
1887

Design of Variable Weight code for multimedia service in SAC–OCDMA systems

Design of Variable Weight code for multimedia service in SAC–OCDMA systems

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Variable weight (VW) codes for spectral amplitude coding–optical code division multiple access system are useful in multimedia applications. VW code algorithm is proposed which is based on enhanced and modified double weight codes. The proposed algorithm can be used for any combination of weights >2. The cross-correlation among all users is at most 1. This code construction algorithm ensures higher power at receiver for higher-weight users. Lower-weight users receive less power compared with higher-weight users. The difference in received power translates as varying performance, and are useful for multimedia applications. The performance of VW code is analysed using balanced detection (BD) exclusive-OR operation and direct detection with exclusive-OR operation. VW code gives comparable or better performance than previously reported code. It is observed that supportable number of users for higher weight, at bit error rate (BER) of 10−9 (data) are 28, 33 and 35 for random diagonal (RD) code, Khazani-Syed (KS) code and VW code, respectively, using BD. Supportable number of users for lower weight, at BER of 10−4 (voice) are 23, 31 and 37 for RD code, KS code and VW code, respectively, using BD.

References

    1. 1)
      • 1. Kwong, W., Prucnal, P., Perrier, P.: ‘Synchronous versus asynchronous CDMA for fiber-optic LANs using optical signal processing’. Global Telecommunications Conf. 1989 and Exhibition Communications Technology for the 1990s and Beyond GLOBECOM 89, 1989, 2, pp. 10121016.
    2. 2)
      • 2. Maric, S.V., Moreno, O., Corrada, C.J.: ‘Multimedia transmission in fiberoptic LANs using optical CDMA’, J. Lightwave Technol., 1996, 14, (10), pp. 21492153.
    3. 3)
      • 3. Beyranvand, H., Ghaffari, B.M., Salehi, J.A.: ‘Multirate, differentiated-QoS, and multilevel fiber-optic CDMA system via optical logic gate elements’, J. Lightwave Technol., 2009, 27, (19), pp. 43484359.
    4. 4)
      • 4. Lee, C.-K., Kim, J., Seo, S.-W.: ‘Quality-of-service differentiation by multilength variable-weight time-and-frequency-hopping optical orthogonal codes in optical code-division multiple-access networks’, J. Opt. Netw., 2006, 8, pp. 611624.
    5. 5)
      • 5. Zaccarin, D., Kavehrad, M.: ‘An optical CDMA system based on spectral encoding of LED’, IEEE Photonics Technol. Lett., 1993, 5, (4), pp. 479482.
    6. 6)
      • 6. Kavehrad, M., Zaccarin, D.: ‘Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources’, J. Lightwave Technol., 1995, 13, (3), pp. 534545.
    7. 7)
      • 7. Wei, Z., Ghafouri-Shiraz, H.: ‘Codes for spectral-amplitude-coding optical CDMA systems’, J. Lightwave Technol., 2002, 20, (8), pp. 12841291.
    8. 8)
      • 8. Djordjevic, I.B., Vasic, B., Rorison, J.: ‘Multi-weight unipolar codes for multimedia spectral-amplitude-coding optical CDMA systems’, IEEE Commun. Lett., 2004, 8, (4), pp. 259261.
    9. 9)
      • 9. Wei, Z., Shalaby, H., Ghafouri-Shiraz, H.: ‘Modified quadratic congruence codes for fiber Bragg grating-based spectral-amplitude-coding optical CDMA systems’, J. Lightwave Technol., 2001, 19, (9), pp. 12741281.
    10. 10)
      • 10. Djordjevic, I.B., Vasic, B.: ‘Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems’, J. Lightwave Technol., 2003, 21, (9), pp. 18691875.
    11. 11)
      • 11. Aljunid, S., Ismail, M., Ramli, A., et al: ‘A new family of optical code sequences for spectral-amplitude-coding optical CDMA systems’, IEEE Photonics Technol. Lett., 2004, 16, (10), pp. 23832385.
    12. 12)
      • 12. Hasoon, F.N., Aljunid, S.A., Abdullah, M.K., et al: ‘Spectral amplitude coding OCDMA systems using enhanced double weight code’, J. Eng. Sci. Technol., 2006, 1, (2), pp. 192202.
    13. 13)
      • 13. Zahid, A.Z.G., Hasoon, F.N., Shaari, S.: ‘New code structure for enhanced double weight (EDW) code for spectral amplitude coding OCDMA system’. Int. Conf. Future Computer and Communication (ICFCC), 2009, pp. 658661.
    14. 14)
      • 14. Ahmed, H.Y., Zeghid, M., Nisar, K.S., et al: ‘Numerical method for constructing fixed right shift (FRS) code for SAC–OCDMA systems’, Int. J. Adv. Comput. Sci. Appl. (IJACSA), 2017, 8, (1), pp. 245252.
    15. 15)
      • 15. Nisar, K.: ‘Numerical construction of generalized matrix partitioning code for spectral amplitude coding optical {CDMA} systems’, Optik, Int. J. Light Electron Opt., 2017, 130, pp. 619632.
    16. 16)
      • 16. Imtiaz, W.A., Ilyas, M.: ‘Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code’, Infrared Phys. Technol., 2016, 79, pp. 3644.
    17. 17)
      • 17. Ahmad Anas, S.B., Abdullah, M.K., Mokhtar, M., et al: ‘Optical domain service differentiation using spectral-amplitude coding’, Opt. Fiber Technol., 2009, 15, (1), pp. 2632.
    18. 18)
      • 18. Seyedzadeh, S., Mahdiraji, G.A., Sahbudin, R.K.Z., et al: ‘Experimental demonstration of variable weight SAC–OCDMA system for QoS differentiation’, Opt. Fiber Technol., 2014, 20, (5), pp. 495500.
    19. 19)
      • 19. Anas, S.B.A., Seyedzadeh, S., Mokhtar, M., et al: ‘Variable weight Khazani-Syed code using hybrid fixed-dynamic technique for optical code division multiple access system’, Opt. Eng., 2016, 55, 106101.
    20. 20)
      • 20. Seyedzadeh, S., Moghaddasi, M., Anas, S.B.A.: ‘Variable-weight optical code division multiple access system using different detection schemes’, J. Telecommun. Inf. Technol., 2016, 3, pp. 5059.
    21. 21)
      • 21. Fadhil, H.A., Aljunid, S.A., Badlisha, R.: ‘Triple-play services using random diagonal code for spectral amplitude coding OCDMA systems’, J. Opt. Commun., 2009, 30, pp. 155159, doi: https://doi.org/10.1515/JOC.2009.30.3.155.
    22. 22)
      • 22. Kakaee, M.H., Essa, S.I., Abd, T.H., et al: ‘Dynamic quality of service differentiation using fixed code weight in optical CDMA networks’, Opt. Commun., 2015, 355, pp. 342351.
    23. 23)
      • 23. Seyedzadeh, S., Rahimian, F.P., Glesk, I., et al: ‘Variable weight spectral amplitude coding for multiservice OCDMA networks’, Opt. Fiber Technol., 2017, 37, pp. 5360.
    24. 24)
      • 24. Kumawat, S., Maddila, R.K.: ‘Generalized optical code construction for enhanced and modified double weight like codes without mapping for SAC–OCDMA systems’, Opt. Fiber Technol., 2016, 30, pp. 7280.
    25. 25)
      • 25. Noshad, M., Jamshidi, K.: ‘Code family for modified spectral-amplitude-coding OCDMA systems and performance analysis’, J. IEEE/OSA Opt. Commun. Netw., 2010, 2, (6), pp. 344354.
    26. 26)
      • 26. Fadhil, H.A., Aljunid, S., Ahmad, R.: ‘Performance of random diagonal code for (OCDMA) systems using new spectral direct detection technique’, Opt. Fiber Technol., 2009, 15, (3), pp. 283289.
    27. 27)
      • 27. Kakaee, M.H., Seyedzadeh, S., Fadhil, H.A., et al: ‘Development of multi-service (MS) for SAC–OCDMA systems’, Opt. Laser Technol., 2014, 60, (0), pp. 4955, doi: http://dx.doi.org/10.1016/j.optlastec.2014.01.002.
    28. 28)
      • 28. Ahmed, H.Y., Almaleeh, M., Fadhil, H., et al: ‘Performance analysis of spectral-amplitude-coding optical CDMA systems with new subtract exclusive OR detection (SED) using vectors combinatorial (VC) code’, Optik, Int. J. Light Electron Opt., 2012, 123, (15), pp. 13521359.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2017.0046
Loading

Related content

content/journals/10.1049/iet-opt.2017.0046
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address