Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design of a single-mode photonic crystal fibre with ultra-low material loss and large effective mode area in THz regime

A novel low-loss photonic crystal fibre (PCF) has been suggested for THz spectral applications. The proposed PCF contains five layers cladding with three layers core. The cladding and core region of the fibre are arranged in the octagonal and porous manner, respectively, where both the core and cladding vicinity are constituted by circular air cavities. The optical properties of the PCF are investigated by utilising the full vectorial finite-element method along with the perfect match layers boundary condition. All numerical outcomes show the ultra-low effective material loss of 0.049 cm−1 and large effective area of 3 × 10−7 m2 at 1 THz operating frequency. The power fraction is also considered as another significant parameter to design a low loss fibre. The almost more than half of the useful power (about 53.78% at f = 1 THz) goes through the core over the wider operating frequency. In addition this, the proposed single-mode PCF can be fabricated using the sol–gel method and is useful not only for high data traffic transmission applications but also for THz waveguide applications.

References

    1. 1)
      • 10. Wächter, M., Nagel, M., Kurz, H.: ‘Erratum: metallic slit waveguide for dispersion-free low-loss terahertz signal transmission’, Appl. Phys. Lett., 2008, 92, (10), p. 109905.
    2. 2)
      • 18. Islam, R., Habib, M.S., Hasanuzzaman, G.K.M., et al: ‘A novel low-loss diamond-core porous fiber for polarization maintaining terahertz transmission’, IEEE Photon. Tech. Lett., 2016, 28, (14), pp. 15371540.
    3. 3)
      • 29. Asaduzzaman, S., Ahmed, K.: ‘Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring’, Sens. Biosen. Res., 2016, 10, (1), pp. 2026.
    4. 4)
      • 16. Rana, S., Ali, S., Ahmed, N., et al: ‘Ultra-high birefringent and dispersion-flattened low loss single-mode terahertz wave guiding’, IET Commun., 2016, 10, (13), pp. 15791583.
    5. 5)
      • 4. Fathololoumi, S., Dupont, E., Chan, C.W.I., et al: ‘Terahertz quantum cascade lasers operating up to ∼200 K with optimized oscillator strength and improved injection tunneling’, Opt. Exp., 2012, 20, (4), p. 3866.
    6. 6)
      • 9. Jeon, T.I., Zhang, J., Grischkowsky, D.: ‘THz Sommerfeld wave propagation on a single metal wire’, Appl. Phys. Lett., 2005, 86, (16), p. 161904.
    7. 7)
      • 20. Hasan, M.R., Anower, M.S., Hasan, M.I., et al: ‘Polarization maintaining low-loss slotted core kagome lattice THz fiber’, IEEE Photon. Tech. Lett., 2016, 28, (16), pp. 17511754.
    8. 8)
      • 19. Islam, R., Rana, S.: ‘Dispersion flattened, low-loss porous fiber for single-mode terahertz wave guidance’, Opt. Eng., 2015, 54, (5), pp. 055102055102.
    9. 9)
      • 26. Ahmed, K., Morshed, M.: ‘Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications’, Sens. Biosen. Res., 2016, 7, (1), pp. 16.
    10. 10)
      • 14. Han, H., Park, H., Cho, M., et al: ‘Terahertz pulse propagation in a plastic photonic crystal fiber’, Appl. Phys. Lett., 2002, 80, p. 2634.
    11. 11)
      • 24. Kaijage, S.F., Ouyang, Z., Jin, X.: ‘Porous-core photonic crystal fiber for low loss terahertz wave guiding’, IEEE Photon. Tech. Lett., 2013, 25, (15), pp. 14541457.
    12. 12)
      • 22. Emiliyanov, G., Jensen, J.B., Bang, O., et al: ‘Localized biosensing with topasmicrostructured polymer optical fiber’, Opt. Lett., 2007, 32, (5), pp. 460462.
    13. 13)
      • 2. Hasan, M.R., Anower, M.S., Islam, M.A., et al: ‘Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance’, Appl. Opt., 2016, 55, (15), pp. 41454152.
    14. 14)
      • 27. Ahmed, K., Morshed, M., Asaduzzaman, S., et al: ‘Optimization and enhancement of liquid analyte sensing performance based on square-cored octagonal photonic crystal fiber’, Optik, 2017, 131, (1), pp. 687696.
    15. 15)
      • 8. McGowan, R.W., Gallot, G., Grischkowsky, D.: ‘Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides’, Opt. Lett., 1999, 24, (20), p. 1431.
    16. 16)
      • 30. Bisen, R.T., Trevor, D.J.: ‘Solgel-derived microstructured fibers: fabrication and characterization’. Proc. Optical Fiber Communication Conf., Optical Society of America, March 2005.
    17. 17)
      • 23. Emiliyanov, G., Høiby, P.E., Pedersen, L.H., et al: ‘Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers’, Sensors, 2013, 13, (3), pp. 32423251.
    18. 18)
      • 15. Lei, J., Jian-Quan, Y.: ‘Single mode condition and power fraction of air-cladding total refractive guided porous polymer terahertz fibers’, Chin. Phys. Lett., 2011, 28, (8), p. 084202.
    19. 19)
      • 5. Sizov, F., Rogalski, A.: ‘THz detectors’, Prog. Quantum Electron., 2010, 34, (5), pp. 278347.
    20. 20)
      • 7. Bowden, B., Harrington, J.A., Mitrofanov, O.: ‘Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation’, Opt. Lett., 2007, 32, (20), p. 2945.
    21. 21)
      • 28. Asaduzzaman, S., Ahmed, K., Bhuiyan, T., et al: ‘Hybrid photonic crystal fiber in chemical sensing’, SpringerPlus, 2016, 5, (1), pp. 111.
    22. 22)
      • 25. Islam, M.S., Rana, S., Islam, M.R., et al: ‘Porous core photonic crystal fibre for ultra-low material loss in THz regime’, IET Commun., 2016, 10, (16), pp. 21792183.
    23. 23)
      • 11. Nagel, M., Marchewka, A., Kurz, H.: ‘Low-index discontinuity terahertz waveguides’, Opt. Expr., 2006, 14, (21), p. 9944.
    24. 24)
      • 3. Lee, A.W.M., Qin, Q., Kumar, S., et al: ‘Real-time terahertz imaging over a standoff distance (>25 meters)’, Appl. Phys. Lett., 2006, 89, (14), p. 141125(1–3).
    25. 25)
      • 12. Hassani, A., Dupuis, A., Skorobogatiy, M.: ‘Low loss porous terahertz fibers containing multiple subwavelength holes’, Appl. Phys. Lett., 2008, 92, (7), p. 071101.
    26. 26)
      • 17. Islam, R., Habib, M.S., Hasanuzzaman, G.K.M., et al: ‘Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance’, Opt. Lett., 2016, 41, (3), pp. 440443.
    27. 27)
      • 1. Pawar, A.Y., Sonawane, D.D., Erande, K.B., et al: ‘Terahertz technology and its applications’, Drug Invent. Today, 2013, 5, (2), pp. 157163.
    28. 28)
      • 13. Jiang, X.G., Chen, D.R., Hu, G.F.: ‘Suspended hollow core fiber for terahertz wave guiding’, Appl. Opt., 2013, 52, pp. 770774.
    29. 29)
      • 21. Nielsen, K., Rasmussen, H.K., Adam, A.J.L., et al: ‘Low-loss Topas fibers for the terahertz frequency range’, Opt. Expr., 2009, 17, (10), pp. 85928601.
    30. 30)
      • 6. Dupuis, A., Stoeffler, K., Ung, B., et al: ‘Transmission measurements of hollow-core THz Bragg fibers’, J. Opt. Soc. Am. B, 2011, 28, (4), p. 896.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2017.0028
Loading

Related content

content/journals/10.1049/iet-opt.2017.0028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address