access icon free High-bit-rate SOA-based optical network unit with low seeding power that uses feedback seeding scheme

This study presents a method to improve the efficiency of semiconductor optical amplifier (SOA)-based optical network units (ONUs). The method is based on the combination of remote seeding and self-seeding schemes, which is referred to as the feedback seeding (FBS) scheme. In the proposed method, a centralised laser source provides a coherent light wave at the optical line terminal. At the ONU, a fibre Bragg grating is positioned to reflect a small percentage of the SOA output to increase seeding power. Consequently, the instauration issue is overcome by achieving coherent light power and a higher data rate. A colourless FBS-ONU is also demonstrated in this research. Simulation results demonstrate that the proposed FBS scheme can operate sufficiently with a low seeding power from the central office. In the remote seeding scheme, sensitivity increases as seeding power increases. On the other hand, in the FBS scheme, sensitivity is high and constant at seeding power values of −30 dBm and above. In this study, sensitivity is −23  dBm. The results show that the proposed scheme provides significant improvement in bit error rate performance and optical signal to noise ratio.

Inspec keywords: optical transmitters; semiconductor optical amplifiers; error statistics; laser feedback; diffraction gratings; optical fibre networks

Other keywords: optical signal to noise ratio; feedback seeding; remote seeding; coherent light power; SOA-based optical network unit; fibre Bragg grating; ONU; self-seeding; semiconductor optical amplifier; bit error rate; FBS

Subjects: Optical fibre networks; Gratings, echelles; Lasing action in semiconductors; Probability theory, stochastic processes, and statistics; Optical communication equipment; Semiconductor lasers; Optical communication devices, equipment and systems; Other topics in statistics

References

    1. 1)
      • 21. Kwon, H.C., Won, Y.Y., Han, S.K., et al: ‘A self-seeded reflective SOA-based optical network unit for optical beat interference robust WDM/SCM-PON link’, IEEE Photonics Technol. Lett., 2006, 18, pp. 18521854.
    2. 2)
      • 25. Giuliani, G., Cinguino, P., Seano, V.: ‘Multifunctional characteristics of 1.5-μm two-section amplifier-modulator-detector SOA’, IEEE Photonics Technol. Lett., 1996, 8, (3), pp. 367369.
    3. 3)
      • 20. Wong, E.: ‘Self-seeding reflective semiconductor optical amplifiers for WDM access networks (invited)’. 9th Int. Conf. Information, Communications and Signal Processing (ICICS) 2013, 2013, pp. 14.
    4. 4)
      • 27. Olsson, N.A.: ‘Lightwave systems with optical amplifiers’, J. Lightwave Technol., 1989, 7, (7), pp. 10711082.
    5. 5)
      • 39. Wong, E., Lee, K.L., Anderson, T.B.: ‘Directly modulated self-Seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks’, J. Lightwave Technol., 2007, 25, (1), pp. 6774.
    6. 6)
      • 35. Agrawal, G.P.: ‘Fiber optic communication systems’ (Wiley Series in Microwave and Optical Engineering, 2002, 3rd edn).
    7. 7)
      • 18. Deniel, Q., Saliou, F., Erasme, D., et al: ‘Up to 45km-long amplified self-seeded RSOA based external cavity for 2.5Gb/s WDM PON transmission’. Optical Fiber Communication Conf. and Exposition and the National Fiber Optic Engineers Conf. (OFC/NFOEC), 2013, 2013, pp. 13.
    8. 8)
      • 22. Rampone, T., Li, H.W., Sharaiha, A.: ‘Semiconductor optical amplifier used as an in-line detector with the signal DC-component conservation’, J. Lightwave Technol., 1998, 16, (7), p. 1295.
    9. 9)
      • 1. Iwatsuki, K., Kani, J.I.: ‘Applications and technical issues of wavelength-Division multiplexing passive optical networks with colorless optical network units [Invited]’, IEEE/OSA J. Opt. Commun. Netw., 2009, 1, pp. C17C24.
    10. 10)
      • 12. El-Sahn, Z.A., Mathlouthi, W., Fathallah, H., et al: ‘Dense SS-WDM over legacy PONs: smooth upgrade of existing FTTH networks’, J. Lightwave Technol., 2010, 28, pp. 14851495.
    11. 11)
      • 24. Bertilsson, K., Rorgren, R., Andrekson, P.A., et al: ‘Characterization of an InGaAsP semiconductor laser amplifier as a multifunctional device’, J. Lightwave Technol., 1993, 11, (7), pp. 11471150.
    12. 12)
      • 19. Duarte, U.R., Rosolem, J.B., Penze, R.S., et al: ‘Analysis of ASE-related impairments on wavelength-reuse WDM-PONs based on self-seeded reflective SOAs’, IEEE/OSA J. Opt. Commun. Netw., 2014, 6, pp. 773781.
    13. 13)
      • 9. Ab-Rahman, M.S., Shaltami, F.M.: ‘The effect of the seeding power on RSOA-based colorless ONU performance in FTTH-PON’, Int. J. Scientific Eng. Res., 2013, 4, pp. 147148.
    14. 14)
      • 28. Gillner, L.: ‘Modulation properties of a near travelling-wave semiconductor laser amplifier’, IEE Proc. J, Optoelectron., 1992, 139, (5), pp. 331338.
    15. 15)
      • 10. Wong, E., Lee, K.L., Anderson, T., et al: ‘Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA’, Electron. Lett., 2006, 42, pp. 299301.
    16. 16)
      • 8. Takesue, H., Sugie, T.: ‘Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources’, J. Lightwave Technol., 2003, 21, pp. 25462556.
    17. 17)
      • 37. Agrawal, D.C.: ‘Fiber optic communication’ (S. Chand & Company Ltd, 2007, 5th edn).
    18. 18)
      • 23. Olsson, N.A.: ‘Semiconductor optical amplifiers’, Proc. IEEE, 1992, 80, (3), pp. 375382.
    19. 19)
      • 34. Keiser, G.: ‘Optical fiber communication’ (McGraw Hill International Edition, 2010, 4th edn).
    20. 20)
      • 30. Gustavsson, M., Karlsson, A., Thylen, L.: ‘Traveling wave semiconductor laser amplifier detectors’, J. Lightwave Technol., 1990, 8, (4), pp. 610617.
    21. 21)
      • 40. Sun, F.M., Guo, S.Q., Zhuang, P., et al: ‘SOA as colorless transmitters for bidirectional WDM PON’. 2010 Int. Conf. Computer, Mechatronics, Control and Electronic Engineering (CMCE), 2010, pp. 7275.
    22. 22)
      • 3. Urata, R., Lam, C., Liu, H., et al: ‘High performance, low cost, colorless ONU for WDM-PON’. Optical Fiber Communication/National Fiber Optic Engineers Conf. (OFC/NFOEC), Los Angeles, US, March 2012, pp. 13.
    23. 23)
      • 29. Ehrhardt, A., Eiselt, M., Grossopf, G., et al: ‘Semiconductor laser amplifier as optical switching gate’, J. Lightwave Technol., 1993, 11, (8), pp. 12871295.
    24. 24)
      • 5. Takushima, Y., Cho, K.Y., Chung, Y.C., et al: ‘Design issues in RSOA-based WDM PON’. PhotonicsGlobal@Singapore, 2008, IPGC 2008, IEEE, 2008, pp. 14.
    25. 25)
      • 31. Fortenberry, R.M., Lowery, A.J., Tucker, R.S.: ‘Up to 16 dB improvement in detected voltage using two-section semiconductor optical amplifier detector’, Electron. Lett., 1992, 28, (5), pp. 474476.
    26. 26)
      • 2. Payoux, F., Chanclou, P., Naveena, G., et al: ‘WDM-PON with colorless ONUs’. Optical Fiber Communication/National Fiber Optic Engineers Conf. (OFC/NFOEC), Anaheim, US, March 2007, pp. 13.
    27. 27)
      • 26. Simon, J.: ‘Gainasp semiconductor laser amplifiers for single-mode fiber communications’, J. Lightwave Technol., 1987, 5, (9), pp. 12861295.
    28. 28)
      • 41. Ab-Rahman, M.S., Shaltami, F.M.: ‘Principles and issues of colorless WDMPON’, Aust. J. Basic Appl. Sci., 2013, 7, pp. 294299.
    29. 29)
      • 15. Fei, X., Wen-De, Z.: ‘Performance of self-seeded RSOAs in WDM-PONs’. Conf. Lasers and Electro-Optics (CLEO), 2013, 2013, pp. 12.
    30. 30)
      • 4. Yeh, C.H., Chow, C.W., Shih, F.Y., et al: ‘Adaptive upstream rate adjustment by RSOA-ONU depending on different injection power of seeding light in standard-reach and long-reach PON systems’, Opt. Commun., 2012, 285, pp. 35873591.
    31. 31)
      • 7. Lee, W., Park, M.Y., Cho, S.H., et al: ‘Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers’, IEEE Photonics Technol. Lett., 2005, 17, pp. 24602462.
    32. 32)
      • 33. Glance, B., Wiesenfeld, J.M., Koren, U., et al: ‘High performance optical wavelength shifter’, Electron. Lett., 1992, 28, (18), pp. 17141715.
    33. 33)
      • 11. Le, S.D., Deniel, Q., Saliou, F., et al: ‘16×2.5 gbit/s and 5 gbit/s WDM PON based on self-seeded RSOA’. 15th Int. Conf. Transparent Optical Networks (ICTON), 2013, 2013, pp. 14.
    34. 34)
      • 32. Valiente, I., Simon, J.C., Le Ligne, M.: ‘Theoretical analysis of semiconductor optical amplifier wavelength shifter’, Electron. Lett., 1993, 29, (5), pp. 502503.
    35. 35)
      • 16. Saliou, F., Le, S.D., Deniel, Q., et al: ‘Reach extension of RSOA-self seeded transmitters for DWDM metropolitan networks with a single EDFA’. 39th European Conf. and Exhibition on Optical Communication (ECOC 2013), 2013, pp. 13.
    36. 36)
      • 6. Frigo, N.J., Ioannone, P.P., Magill, P.D., et al: ‘A wavelength-division multiplexed passive optical network with cost-shared components’, IEEE Photonics Technol. Lett., 1994, 6, pp. 13651367.
    37. 37)
      • 38. Mokhtar, M.R., Goh, C.S., Butler, S.A., et al: ‘Fibre Bragg grating compression-tuned over 110 nm’, Electron. Lett., 2003, 39, (6), pp. 509511.
    38. 38)
      • 13. El-Sahn, Z.A., Mathlouthi, W., Fathallah, H., et al: ‘A novel FBG-based self-seeded RSOA transmitter with noise mitigation for dense SS-WDM PONs’. 23rd Annual Meeting of the IEEE Photonics Society, 2010, 2010, pp. 349350.
    39. 39)
      • 36. Khare, R.P.: ‘Fiber optics and optoelectronics’ (Oxford University Press, 2004, 1st edn).
    40. 40)
      • 42. Ab-Rahman, M.S., Shaltami, F.M.: ‘Colorless and sourceless optical network units in passive optical networks’, J. Theor. Appl. Inf. Technol., 2015, 75, (3), pp. 293300.
    41. 41)
      • 14. Parolari, P., Marazzi, L., Brunero, M., et al: ‘Operation of a RSOA WDM PON self-seeded transmitter over more than 50 km of SSMF up to 10 Gb/s’. Optical Fiber Communications Conf. and Exhibition (OFC), 2014, 2014, pp. 13.
    42. 42)
      • 17. Ma, Y., Liu, D., Yu, J., et al: ‘System evaluation of economic 16/32chs 1.25gbps WDM-PON with self-seeded RSOA’. 10th Int. Conf. Optical Communications and Networks (ICOCN 2011), 2011, pp. 12.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2017.0017
Loading

Related content

content/journals/10.1049/iet-opt.2017.0017
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading