access icon free Distribution of reflection spectrum for the photonic-crystal structure of Morpho butterfly wing under oblique incidence

In this paper, the authors investigate the optical reflection phenomena of the periodic nanostructure of a Morpho butterfly wing under the oblique-incident light condition. Also, they discuss the simulation of butterfly wings under the view of an optical grating and photonic crystal by using rigorous coupled-wave analysis method and plane wave expansion, respectively. The simulation results show that the displaced lamella is the foremost condition of the reflection light having strong frequency stability under oblique incidence. Moreover, the modified photonic density of state is proposed to evaluate the reflection feature under oblique incidence.

Inspec keywords: biomimetics; nanophotonics; photonic crystals; diffraction gratings; bio-optics; light reflection

Other keywords: displaced lamella; oblique incidence; optical reflection spectrum; frequency stability; photonic density of states; optical grating; rigorous coupled-wave analysis method; oblique-incident light condition; Morpho butterfly wing; plane wave expansion; photonic crystal structure; periodic nanostructure

Subjects: Photonic bandgap materials; Interactions of biosystems with radiations; Edge and boundary effects; optical reflection and refraction

References

    1. 1)
      • 13. Siddique, R.H., Diewald, S., Leuthold, J., et al: ‘Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies’, Opt. Express, 2013, 21, pp. 1435114361.
    2. 2)
      • 10. Zhu, D., Kinoshita, S., Cai, D., et al: ‘Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: effects of alternately stacked shelves and ridge density’, Phys. Rev. E, 2009, 80, p. 051924.
    3. 3)
      • 5. Kinoshita, S., Yoshioka, S.: ‘Structural colors in nature: the role of regularity and irregularity in the structure’, Chem. Phys. Chem., 2006, 6, pp. 14421459.
    4. 4)
      • 1. Parker, A.R., Townley, H.E.: ‘Biomimetics of photonic nanostructures’, Nanotechnology, 2007, 2, pp. 347353.
    5. 5)
      • 4. Parker, A.R.: ‘Natural photonic engineers’, Mater. Today, 2002, 5, pp. 2631.
    6. 6)
      • 21. Gralak, B., Tayeb, G., Enoch, S.: ‘Morpho butterflies wings color modeled with lamellar grating theory’, Opt. Express, 2001, 9, pp. 567578.
    7. 7)
      • 16. Sakoda, K.: ‘Optical properties of photonic crystal’ (Springer, Berlin, 2001), p. 14.
    8. 8)
      • 3. Kinoshita, S., Yoshioka, S., Miyazaki, J.: ‘Physics of structural colors’, Rep. Prog. Phys., 2008, 71, p. 076401.
    9. 9)
      • 7. Kinoshita, S., Yoshioka, S., Kawagoe, K.: ‘Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale’, Proc. R. Soc. Lond. B, 2002, 269, pp. 14171421.
    10. 10)
      • 2. Huang, J., Wang, X., Wang, Z.L.: ‘Bio-inspired fabrication of antireflection nanostructures by replicating fly eyes’, Nanotechnology, 2008, 19, p. 025602.
    11. 11)
      • 24. Andonegui, I., Garcia-Adeva, A.J.: ‘The finite element method applied to the study of two-dimensional photonic crystals and resonant cavities’, Opt. Express, 2013, 21.4, pp. 40724092.
    12. 12)
      • 18. Wang, Y., Cheng, B., Zhang, D.: ‘The density of states in quasiperiodic photonic crystals’, J. Phys., Condens. Matter, 2003, 15, pp. 76757768.
    13. 13)
      • 17. Busch, K., Lölkes, S., Wehrspohn, R.B., et al: ‘Photonic crystal’ (Wiley, New York, 2004), p. 4.
    14. 14)
      • 8. Kinoshita, S., Yoshioka, S., Fujii, Y., et al: ‘Photophysics of structural color in the Morpho butterflies’, Forma, 2002, 17, pp. 103121.
    15. 15)
      • 6. Tayeb, G., Gralak, B., Enoch, S.: ‘Structural colors in Nature and butterfly-wing modeling’, Opt. Photonics News, 2003, 14, pp. 3843.
    16. 16)
      • 14. Wang, W., Zhang, W., Gu, J., et al: ‘Design of a structure with low incident and viewing angle dependence inspired by Morpho butterflies’, Sci. Rep., 2013, 3, p. 3427.
    17. 17)
      • 15. Moharam, M.G., Grann, E.B., Pommet, D.A., et al: ‘Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings’, J. Opt. Soc. Am. A, 1995, 12, pp. 10681076.
    18. 18)
      • 9. Yoshioka, S., Kinoshita, S.: ‘Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly’, Proc. Biol. Sci., 2004, 271, pp. 581587.
    19. 19)
      • 20. Taniguchi, T., Büttiker, M.: ‘Friedel phases and phases of transmission amplitudes in quantum scattering systems’, Phys. Rev. B, 1999, 60, pp. 1381413823.
    20. 20)
      • 22. Mihai, D.E., Strãjescu, E.: ‘Considerations about kalman filtration applied to reconstruction methods’, Univ. Politeh. Buchar., Sci. Bull. D, Mech. Eng., 2007, 69, pp. 5966.
    21. 21)
      • 12. Steindorfer, M.A., Schmidt, V., Belegratis, M., et al: ‘Detailed simulation of structural color generation inspired by the Morphobutterfly’, Opt. Express, 2012, 20, pp. 2148521494.
    22. 22)
      • 11. Saito, A., Murase, J., Yonezawa, M., et al: ‘High-throughput reproduction of the Morpho butterfly's specific high contrast blue’, Proc. SPIE, 2012, 8339, p. 83390C-1.
    23. 23)
      • 19. Sukhoivanov, I.A., Guryev, I.V., Lucio, J.A.A., et al: ‘Photonic density of states maps for design of photonic crystal devices’, Microelectron. J., 2008, 39, pp. 685689.
    24. 24)
      • 23. Taflove, A., Hagness, S.C.: ‘Computational electrodynamics the finite-difference time-domain method’ (Artech House, London, 2000), p. 67.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2017.0016
Loading

Related content

content/journals/10.1049/iet-opt.2017.0016
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading