access icon free Lambertian and photonic light trapping analysis with thickness for GaAs solar cells based on 2D periodic pattern

The study proposes designs using 2D photonic crystal (PhC) structure-based thin film heterojunction gallium arsenide (GaAs) solar cell with a periodic pattern having PhC structure extends from top transparent conducting oxide (TCO) to inside the p-AlGaAs window layer placed just above the active layer of GaAs material in one design and in another PhC structure is etched only in TCO. The work presents the comparative analysis of the proposed structure with Lambertian light trapping limits and the planar cell, taken as reference. The study is also performed for double-layer anti-reflective coating (ARC) structure. The study presents the quantitative analysis of the effect of PhC structure in the performance of the design and how the effect varies with the thickness of absorption layer. It has been found that a considerable increase in efficiency has been achieved, especially for thinner active layers, demonstrating the advantage of a wavelength-scale, PhC-based structures for thin-film solar cells. The results have shown that PhC structure (etched till inside p-AlGaAs)-based solar cell exceeds the efficiency of the double ARC-based structure by more than 18% for 50 nm thin active layer cell. The parameters have been optimised and calculated by means of rigorous coupled wave analysis (RCWA).

Inspec keywords: semiconductor heterojunctions; gallium arsenide; thin film devices; antireflection coatings; photonic crystals; solar cells; III-V semiconductors; semiconductor thin films; etching; radiation pressure; aluminium compounds

Other keywords: 2D photonic crystal structure-based thin film heterojunction gallium arsenide solar cell; double-layer antireflective coating structure; planar cell; transparent conducting oxide; GaAs-AlGaAs-GaAs; absorption layer thickness; photonic light trapping analysis; active layer; 2D periodic pattern; rigorous coupled wave analysis; window layer; Lambertian light trapping limits; etching

Subjects: Semiconductor device modelling, equivalent circuits, design and testing; Surface treatment (semiconductor technology); Solar cells and arrays; Photoelectric conversion; solar cells and arrays

References

    1. 1)
      • 3. Schuster, C.S., Bozzola, A., Andreani, L.C., et al: ‘How to assess light trapping structures versus a Lambertian scatterer for solar cells?’, Opt. Express, 2014, 22, (S2), pp. A542A551.
    2. 2)
      • 18. Aspnes, D.E., Kelso, S.M., Logan, R.A., et al: ‘Optical properties of AlxGa1−xAs’, J. Appl. Phys., 1986, 60, pp. 754767.
    3. 3)
      • 28. Depla, D., Mahieu, S., Greene, J.: ‘Sputter deposition processes’. 2010. Available at https://biblio.ugent.be/publication/1095343/file/1095356, accessed October 2016.
    4. 4)
      • 16. Eyderman, S., John, S.: ‘Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells’, Sci. Rep., 2016, 6, p.28303(17).
    5. 5)
      • 10. Springer, J., Poruba, A., Mullerova, L., et al: ‘Absorption loss at nanorough silver back reflector of thin-film silicon solar cells’, J. Appl. Phys., 2004, 95, pp. 14271429.
    6. 6)
      • 5. Bozzola, A., Liscidini, M., Andreani, L.C.: ‘Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns’, Opt. Express, 2012, 20, (S2), pp. 224243.
    7. 7)
      • 20. Malitson, I.H.: ‘Interspecimen comparison of the refractive index of fused silica’, J. Opt. Soc. Am., 1965, 55, (10), pp. 12051209.
    8. 8)
      • 1. Yablonovitch, E., Cody, G.D.: ‘Intensity enhancement in textured optical sheets for solar cells’, IEEE Trans. Electron Devices, 1982, 29, (2), pp. 300305.
    9. 9)
      • 14. Gupta, N.D., Janyani, V.: ‘Design and optimization of photonic crystal diffraction grating based efficient light trapping structure for GaAs thin film solar cell’, J. Nanoelectron. Optoelectron., 2016, 11, (4), pp. 407415.
    10. 10)
      • 30. Alta Devices: ‘About the company’. July 2016. Available at http://www.altadevices.com/about/.
    11. 11)
      • 13. Munday, J.N., Atwater, H.A.: ‘Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings’, Nano Lett., 2011, 11, (6), pp. 21952201.
    12. 12)
      • 6. Miller, O.D., Yablonovitch, E., Kurtz, S.R.: ‘Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit’, IEEE J. Photovoltaics, 2012, 2, (3), pp. 303311.
    13. 13)
      • 7. Laboratory, N.R.E.: ‘Reference Solar Spectral Irradiance: Air Mass 1.5 (G-173–03, ASTM)’. 2004. Available at http://rredc.nrel.gov/solar/spectra/am1.5/, accessed September 2016.
    14. 14)
      • 11. Campbell, P., Green, M.: ‘Light trapping properties of pyramidally textured surfaces’, J. Appl. Phys., 1987, 62, (1), pp. 243249.
    15. 15)
      • 29. Berčič, B.: ‘Introduction to Electron Beam Lithography’. September 2006. Available at http://www-f7.ijs.si/uploads/images/SPIN%20-%20OFF%20TEHNOLOGIJE/Electron_Beam_Lithography.pdf, accessed at October 2016.
    16. 16)
      • 9. Yan, B., Owens, J.M., Jiang, C., et al: ‘High-efficiency amorphous silicon alloy based solar cells and modules’. MRS Symp. Proc., 2005, A23.3, p. 862.
    17. 17)
      • 26. Feng, N.N., Michel, J., Zeng, L., et al: ‘Design of highly Efficient light-trapping structures for thin-film crystalline silicon solar cells’, IEEE Trans. Electron Devices, 2007, 54, (8), pp. 19261933.
    18. 18)
      • 12. Garduño-Nolasco, E., Carrington, P.J., Krier, A., et al: ‘Characterisation of InAs/GaAs quantum dots intermediate band photovoltaic devices’, IET Optoelectron., 2014, 8, (2), pp. 7175.
    19. 19)
      • 22. Wang, X., Khan, M., Gray, J.L., et al: ‘Design of GaAs solar cells operating close to the Shockley–Queisser limit’, IEEE J. Photovoltaics, 2013, 3, (2), pp. 737744.
    20. 20)
      • 15. Zhou, D.B. R.: ‘Photonic crystals enhanced light trapping in thin film solar cells’, J. Appl. Phys., 2008, 103, p. 093102.
    21. 21)
      • 2. Green, M.A.: ‘Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions’, Prog. Photovolt., Res. Appl., 2002, 10, pp. 235241.
    22. 22)
      • 8. Nelson, J.: ‘The physics of solar cell’ (Imperial College Press, London, 2008).
    23. 23)
      • 17. Biswas, R., Ding, C.G., Puscasu, I., et al: ‘Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission’, Phys. Rev. B, 2006, 74, (045107), pp. 16.
    24. 24)
      • 4. Zanotto, S., Liscidini, M., Andreani, L.C.: ‘Light trapping regimes in thin-film silicon solar cells with a photonic pattern’, Opt. Express, 2010, 18, (5), pp. 42604274.
    25. 25)
      • 23. Moharam, M.G., Grann, E.B., Pommet, D.A., et al: ‘Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings’, J. Opt. Soc. Am. A, 1995, 12, (5), pp. 10681076.
    26. 26)
      • 24. Group, Rsoft Design: ‘DiffractMod v2015.06 user guide’ (Synopsys, Inc., Optical Solutions Group, New York, USA, 2015).
    27. 27)
      • 21. König, T. A. F., Ledin, P.A., Kerszulis, J., et al: ‘Electrically tunable plasmonic behavior of nanocube–polymer nanomaterials induced by a redox-active electrochromic polymer’, ACS Nano, 2014, 8, (6), pp. 61826192.
    28. 28)
      • 19. Rakić, A.D.D.A.B., Elazar, J.M., Majewski, M.L.: ‘Optical properties of metallic films for vertical-cavity optoelectronic devices’, Appl. Opt., 1998, 37, (22), pp. 52715283.
    29. 29)
      • 25. Blakemore, J.S.: ‘Semiconducting and other major properties of gallium arsenide’, J. Appl. Phys., 1982, 53, pp. R123R181.
    30. 30)
      • 27. A.N. University: ‘Materials Technology: MOCVD reactor’. November 2002. Available at http://www.anu.edu.au/CSEM/machines/MOCVD.html, accessed October 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2017.0002
Loading

Related content

content/journals/10.1049/iet-opt.2017.0002
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading