Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analysis of metamaterial-based absorber for thermo-photovoltaic cell applications

This study proposed a broadband polarisation independent quad helix metamaterial-based absorber for thermo-photovoltaic cell (TPVC) application. Absorber is a very important part of TPVC. The design and simulation of absorber is done for wide operating wavelength range of TPVC absorber. It is observed that the average absorbance is 92.38% for the wavelength range of 340–1680nm in the proposed absorber. Furthermore, existing absorbers which are used in thermo-photovoltaic and solar cell are compared with proposed absorber and the proposed absorber is better in terms of operating wavelength range.

References

    1. 1)
      • 5. Jones, M., Burdett, L., Ryan, M., et al: ‘Efficiency of 2D photonic crystal emitters in thermophotovoltaic systems’, PAM Rev., 2006, 3, pp. 153162.
    2. 2)
      • 20. Wu, C., Neuner, B.III, John, J., et al: ‘Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems’, J. Opt., 2012, 14, (2), p. 024005.
    3. 3)
      • 13. Nozik, A.J.: ‘Quantum dot solar cells’, Physica E, 2002, 14, (1), pp. 115120.
    4. 4)
      • 14. Kennedy, C.E.: ‘Review of mid-to high-temperature solar selective absorber materials’ (National Renewable Energy Laboratory, Golden CO, 2002), p. 1617.
    5. 5)
      • 3. Andreev, V.M., Khvostikov, V.P., Khvostikova, O.A., et al: ‘Solar thermophotovoltaic converters: efficiency potentialities’. AIP Conf. Proc., Freiburg, June 2004, pp. 96104.
    6. 6)
      • 11. Bernardi, M., Palummo, M., Grossman, J.C.: ‘Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials’, Nano Lett., 2013, 13, (8), p. 3664.
    7. 7)
      • 21. Hashmi, M.H.I., Shahida Rafique, G.: ‘Towards high efficiency solar cells: composite metamaterials’, Global J. Res. Eng., 2013, 13, (10), pp. 1116.
    8. 8)
      • 2. Badescu, V.: ‘Thermodynamic theory of thermo photovoltaic solar energy conversion’, J. Appl. Phys., 2001, 90, (12), pp. 64766486.
    9. 9)
      • 18. Gansel, J.K., Wegener, M., Burger, S., et al: ‘Gold helix photonic metamaterials: a numerical parameter study’, Opt. Express, 2010, 18, (2), p. 1059.
    10. 10)
      • 19. Bourzac, K.: ‘Solar metamaterials’. Report, MIT Technology Review, 2010.
    11. 11)
      • 24. Nam, Y., Yeng, Y.X., Lenert, A., et al: ‘Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters’, Sol. Energy Mater. Sol. Cells, 2014, 122, pp. 287296.
    12. 12)
      • 26. Kaschke, J., Blome, M., Burger, S., et al: ‘Tapered N-helical metamaterials with three-fold rotational symmetry as improved circular polarizers’, Opt. Express, 2014, 22, (17), pp. 1993619946.
    13. 13)
      • 4. Gerein, N.J., Haber, J.A.: ‘One-step synthesis and optical and electrical properties of thin film Cu3BiS3 for use as a solar absorber in photovoltaic devices’, Chem. Mater., 2006, 18, (26), pp. 62976302.
    14. 14)
      • 17. Lu, Z., Zhao, M., Yang, Z.Y., et al: ‘Helical metamaterial absorbers: broadband and polarization-independent in optical region’, J. Lightwave Technol., 2013, 31, (16), pp. 27622768.
    15. 15)
      • 6. Andreev, V.M., Vlasov, A.S., Khvostikov, V.P., et al: ‘Solar thermophotovoltaic converters based on tungsten emitters’, J. Solar Energy Eng., 2007, 129, (3), pp. 298303.
    16. 16)
      • 23. Kaschke, J., Gansel, J.K., Wegener, M.: ‘Metamaterial circular polarizers based on metal N-helices’, Opt. Express, 2012, 20, (23), pp. 2601226020.
    17. 17)
      • 1. Spirkl, W., Ries, H.: ‘Solar thermo photovoltaics: an assessment’, J. Appl. Phys., 1985, 57, (9), pp. 44094414.
    18. 18)
      • 9. Shin, B., Gunawan, O., Zhu, Y., et al: ‘Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber’, Prog. Photovolt., Res. Appl., 2013, 21, (1), pp. 7276.
    19. 19)
      • 25. Dincer, F., Akgol, O., Karaaslan, M., et al: ‘Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime’, Prog. Electromagn. Res., 2014, 144, pp. 93101.
    20. 20)
      • 16. Tao, H., Bingham, C.M., Pilon, D., et al: ‘A dual band terahertz metamaterial absorber’, J. Phys. D Appl. Phys., 2010, 43, p. 225102.
    21. 21)
      • 7. Svetovoy, V.B., Palasantzas, G.: ‘Graphene-on-silicon near-field thermophotovoltaic cell’, Phys. Rev. Appl., 2014, 2, (3), p. 034006.
    22. 22)
      • 10. Lenert, A., Bierman, D.M., Nam, Y., et al: ‘A nanophotonic solar thermophotovoltaic device’, Nat. Nanotechnol., 2014, 9, (2), pp. 126130.
    23. 23)
      • 8. Bermel, P., Ghebrebrhan, M., Chan, W., et al: ‘Design and global optimization of high-efficiency thermophotovoltaic systems’, Opt. Express, 2010, 18, (103), pp. A314A334.
    24. 24)
      • 22. Stutzman, W.L., Thiele, G.A.: ‘Antennas theory and design’ (Wiley, New York, USA, 1998, 2nd edn.).
    25. 25)
      • 12. Mukherjee, B., Simsek, E.: ‘Utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers’, Opt. Commun., 2016, 369, pp. 8993.
    26. 26)
      • 15. Ayop, O.B., Rahim, M.K.A., Murad, N.A., et al: ‘Triple band circular ring-shaped metamaterial absorber for X-Band applications’, Prog. Electromagn. Res. M, 2014, 39, pp. 6575.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2016.0169
Loading

Related content

content/journals/10.1049/iet-opt.2016.0169
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address