http://iet.metastore.ingenta.com
1887

Analysis of metamaterial-based absorber for thermo-photovoltaic cell applications

Analysis of metamaterial-based absorber for thermo-photovoltaic cell applications

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposed a broadband polarisation independent quad helix metamaterial-based absorber for thermo-photovoltaic cell (TPVC) application. Absorber is a very important part of TPVC. The design and simulation of absorber is done for wide operating wavelength range of TPVC absorber. It is observed that the average absorbance is 92.38% for the wavelength range of 340–1680nm in the proposed absorber. Furthermore, existing absorbers which are used in thermo-photovoltaic and solar cell are compared with proposed absorber and the proposed absorber is better in terms of operating wavelength range.

References

    1. 1)
      • 1. Spirkl, W., Ries, H.: ‘Solar thermo photovoltaics: an assessment’, J. Appl. Phys., 1985, 57, (9), pp. 44094414.
    2. 2)
      • 2. Badescu, V.: ‘Thermodynamic theory of thermo photovoltaic solar energy conversion’, J. Appl. Phys., 2001, 90, (12), pp. 64766486.
    3. 3)
      • 3. Andreev, V.M., Khvostikov, V.P., Khvostikova, O.A., et al: ‘Solar thermophotovoltaic converters: efficiency potentialities’. AIP Conf. Proc., Freiburg, June 2004, pp. 96104.
    4. 4)
      • 4. Gerein, N.J., Haber, J.A.: ‘One-step synthesis and optical and electrical properties of thin film Cu3BiS3 for use as a solar absorber in photovoltaic devices’, Chem. Mater., 2006, 18, (26), pp. 62976302.
    5. 5)
      • 5. Jones, M., Burdett, L., Ryan, M., et al: ‘Efficiency of 2D photonic crystal emitters in thermophotovoltaic systems’, PAM Rev., 2006, 3, pp. 153162.
    6. 6)
      • 6. Andreev, V.M., Vlasov, A.S., Khvostikov, V.P., et al: ‘Solar thermophotovoltaic converters based on tungsten emitters’, J. Solar Energy Eng., 2007, 129, (3), pp. 298303.
    7. 7)
      • 7. Svetovoy, V.B., Palasantzas, G.: ‘Graphene-on-silicon near-field thermophotovoltaic cell’, Phys. Rev. Appl., 2014, 2, (3), p. 034006.
    8. 8)
      • 8. Bermel, P., Ghebrebrhan, M., Chan, W., et al: ‘Design and global optimization of high-efficiency thermophotovoltaic systems’, Opt. Express, 2010, 18, (103), pp. A314A334.
    9. 9)
      • 9. Shin, B., Gunawan, O., Zhu, Y., et al: ‘Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber’, Prog. Photovolt., Res. Appl., 2013, 21, (1), pp. 7276.
    10. 10)
      • 10. Lenert, A., Bierman, D.M., Nam, Y., et al: ‘A nanophotonic solar thermophotovoltaic device’, Nat. Nanotechnol., 2014, 9, (2), pp. 126130.
    11. 11)
      • 11. Bernardi, M., Palummo, M., Grossman, J.C.: ‘Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials’, Nano Lett., 2013, 13, (8), p. 3664.
    12. 12)
      • 12. Mukherjee, B., Simsek, E.: ‘Utilization of monolayer MoS2 in Bragg stacks and metamaterial structures as broadband absorbers’, Opt. Commun., 2016, 369, pp. 8993.
    13. 13)
      • 13. Nozik, A.J.: ‘Quantum dot solar cells’, Physica E, 2002, 14, (1), pp. 115120.
    14. 14)
      • 14. Kennedy, C.E.: ‘Review of mid-to high-temperature solar selective absorber materials’ (National Renewable Energy Laboratory, Golden CO, 2002), p. 1617.
    15. 15)
      • 15. Ayop, O.B., Rahim, M.K.A., Murad, N.A., et al: ‘Triple band circular ring-shaped metamaterial absorber for X-Band applications’, Prog. Electromagn. Res. M, 2014, 39, pp. 6575.
    16. 16)
      • 16. Tao, H., Bingham, C.M., Pilon, D., et al: ‘A dual band terahertz metamaterial absorber’, J. Phys. D Appl. Phys., 2010, 43, p. 225102.
    17. 17)
      • 17. Lu, Z., Zhao, M., Yang, Z.Y., et al: ‘Helical metamaterial absorbers: broadband and polarization-independent in optical region’, J. Lightwave Technol., 2013, 31, (16), pp. 27622768.
    18. 18)
      • 18. Gansel, J.K., Wegener, M., Burger, S., et al: ‘Gold helix photonic metamaterials: a numerical parameter study’, Opt. Express, 2010, 18, (2), p. 1059.
    19. 19)
      • 19. Bourzac, K.: ‘Solar metamaterials’. Report, MIT Technology Review, 2010.
    20. 20)
      • 20. Wu, C., Neuner, B.III, John, J., et al: ‘Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems’, J. Opt., 2012, 14, (2), p. 024005.
    21. 21)
      • 21. Hashmi, M.H.I., Shahida Rafique, G.: ‘Towards high efficiency solar cells: composite metamaterials’, Global J. Res. Eng., 2013, 13, (10), pp. 1116.
    22. 22)
      • 22. Stutzman, W.L., Thiele, G.A.: ‘Antennas theory and design’ (Wiley, New York, USA, 1998, 2nd edn.).
    23. 23)
      • 23. Kaschke, J., Gansel, J.K., Wegener, M.: ‘Metamaterial circular polarizers based on metal N-helices’, Opt. Express, 2012, 20, (23), pp. 2601226020.
    24. 24)
      • 24. Nam, Y., Yeng, Y.X., Lenert, A., et al: ‘Solar thermophotovoltaic energy conversion systems with two-dimensional tantalum photonic crystal absorbers and emitters’, Sol. Energy Mater. Sol. Cells, 2014, 122, pp. 287296.
    25. 25)
      • 25. Dincer, F., Akgol, O., Karaaslan, M., et al: ‘Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime’, Prog. Electromagn. Res., 2014, 144, pp. 93101.
    26. 26)
      • 26. Kaschke, J., Blome, M., Burger, S., et al: ‘Tapered N-helical metamaterials with three-fold rotational symmetry as improved circular polarizers’, Opt. Express, 2014, 22, (17), pp. 1993619946.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2016.0169
Loading

Related content

content/journals/10.1049/iet-opt.2016.0169
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address