http://iet.metastore.ingenta.com
1887

Security threats and protection procedures for optical networks

Security threats and protection procedures for optical networks

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the issues of optical network survivability to attacks in the optical physical layer. The authors comprehensively review and discuss the vulnerability of optical networks towards various types of security threats that could appear in the network optical layer: passive eavesdropping attacks and active optical attacks like in-band jamming, out-of-band crosstalk attacks, amplifier attacks and physical infrastructure attacks. They describe and discuss several protection procedures and monitoring techniques to improve network attack survivability. Numerical simulation performances of some attacks and protection schemes are also provided.

References

    1. 1)
      • 1. Furdek, M., Skorin-Kapov, N., Zsigmod, S., et al: ‘Vulnerabilities and security issues in optical networks’. Proc. Int. Conf. Transparent Optical Networks (ICTON), 2014, paper Tu.D3.5.
    2. 2)
      • 2. Rejeb, R., Leeson, M.S., Green, R.J.: ‘Fault and attack management in all-optical networks’, IEEE Commun. Mag., 2006, 44, (11), pp. 7986.
    3. 3)
      • 3. Allen, I.: ‘Western spy agencies tapped major undersea fiber optic cable’, Intelnews.org, August, 2013. Available at http://intelnews.org/2013/08/29/01--1331/.
    4. 4)
      • 4. Gringeri, S., Bitar, N., Xia, T.H.: ‘Extending software defined network principles to include optical transport’, IEEE Commun. Mag., 2013, 51, (3), pp. 3240.
    5. 5)
      • 5. Kreutz, D., Ramos, F.M.V., Verissimo, P.: ‘Towards secure and dependable software-defined networks’. Proc. Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, 2013, pp. 5560.
    6. 6)
      • 6. Everett, B.: ‘Tapping into fibre optical cables’, Netw. Secur., 2007, 207, (5), pp. 1316.
    7. 7)
      • 7. Iqbal, M.Z., Fathallah, H., Belhadj, N.: ‘Optical fiber tapping: methods and precautions’, Proc. of HONET 2011, 2011, pp. 164168.
    8. 8)
      • 8. Peng, Y., Sun, Z., Du, S., et al: ‘Propagation of all-optical crosstalk attack in transparent optical networks’, Opt. Eng., 2011, 50, (8), p. 085002.
    9. 9)
      • 9. Winzer, P.J., Gnauck, A.H., Konczykowska, A., et al: ‘Penalties from in-band crosstalk for advanced optical modulation formats’. Proc. European Conf. on Optical Communication (ECOC), 2011, paper Tu.5.B. 7.
    10. 10)
      • 10. Filer, M., Tibuleac, S.: ‘N-degree ROADM architecture comparison: broadcast-and-select versus route-and-select in 120 Gb/s DP-QPSK transmission systems’. Proc. Optical Fiber Communications Conf. (OFC), 2014, paper Th1I2.
    11. 11)
      • 11. Bruno, G., Camera, M.M.: ‘Securing optical monitoring ports of transmission network elements’. Proc. 2014 Fotonica AEIT Italian Conference Of Photonics Technologies, 2014.
    12. 12)
      • 12. Bononi, A., Serena, P., Rossi, N., et al: ‘Which is the dominant nonlinearity in long-haul PDM QPSK coherent transmissions?’. Proc. European Conf. on Optical Communication (ECOC), September 2010, paper Th.10.E.1.
    13. 13)
      • 13. Furdek, M., Bosiljevac, M., Skorin-Kapov, N., et al: ‘Gain competition in optical amplifiers: a case study’, Proc. of MIPRO 2010, 2010, pp. 467472.
    14. 14)
      • 14. Fagertun, A.M., Skjoldstrup, B.: ‘Flexible transport network expansion via open WDM interfaces’. Proc. Int. Conf. on Computing, Networking and Communications (ICNC), 2013, pp. 385389.
    15. 15)
      • 15. Skorin-Kapov, N., Furdek, M., Zsigmond, S., et al: ‘Physical-layer security in evolving optical networks’, Commun. Mag., 2016, 54, (8), pp. 110117.
    16. 16)
      • 16. Rejeb, R., Leeson, M.S., Machuca, C.M., et al: ‘Control and management issues in all-optical networks’, J. Netw., 2010, 5, (2), pp. 132139.
    17. 17)
      • 17. Habiba, M.F., Tornatoreb, M., Dikbiyikc, F., et al: ‘Disaster survivability in optical communication networks’, Comput. Commun., 2013, 36, (6), pp. 630644.
    18. 18)
      • 18. Soto, H., Erasme, D., Guekos, G.: ‘5-Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers’, Photon. Technol. Lett., 2001, 13, (4), pp. 335337.
    19. 19)
      • 19. Kim, J.H., Jhon, Y.M., Byun, Y.T., et al: ‘All optical XOR gate using semiconductor optical amplifiers without additional input beam’, Photon. Technol. Lett., 2002, 14, (10), pp. 14361438.
    20. 20)
      • 20. Zahng, M., Cui, Y., Zhan, Y., et al: ‘Optical encryption/decryption of 8PSK signal using FWM-based modified XOR’, Appl. Opt., 2015, 54, (25), pp. 78137819.
    21. 21)
      • 21. Abbade, M.L.F., Cvijetic, M., Messani, C.A., et al: ‘Double all-optical encryption of M-QAM signals based on spectrally sliced encoding keys’. Proc. Int. Conf. Transparent Optical Networks (ICTON), 2015, paper TuA1.3.
    22. 22)
      • 22. Fok, M.P., Zhexing, W., Yanhua, Y., et al: ‘Optical layer security in fiber-optic networks’, IEEE Trans. Inf. Forensics Sec., 2011, 6, (3), pp. 725736.
    23. 23)
      • 23. Wu, B., Wang, Z., Tian, Y., et al: ‘Optical steganography based on amplified spontaneous emission noise’, Opt. Express, 2013, 21, (2), pp. 20652071.
    24. 24)
      • 24. Wu, B., Tait, A.N., Chang, M.P., et al: ‘WDM optical steganography based on amplified spontaneous emission noise’, Opt. Lett., 2014, 39, (20), pp. 59255928.
    25. 25)
      • 25. Levy, A., Mahlab, U.: ‘Self checking optical add drop multiplexer’. US Patent 8,050,563 B2, 2011.
    26. 26)
      • 26. Dahan, D., Mahlab, U.: ‘Counter direction jamming method for eavesdropping prevention in data center interconnects’. Proc. Int. Conf. Transparent Optical Networks (ICTON), 2016, paper Mo.B3.2.
    27. 27)
      • 27. Skorin-Kapov, N., Chen, J., Wosinska, L.: ‘A new approach to optical networks security: attack-aware routing and wavelength assignment’, IEEE/ACM Trans. Net., 2010, 18, (3), pp. 750760.
    28. 28)
      • 28. Manousakis, K., Ellinas, G.: ‘Attack-aware planning of transparent optical networks’, Opt. Switch. Netw., 2016, 19, (2), pp. 97109.
    29. 29)
      • 29. Mahlab, U.: ‘Technique for managing optical network’. US patent 2010/0104283 A1, 2010.
    30. 30)
      • 30. Rejeb, R., Leeson, M.S., Green, R.J.: ‘Cost optimization method for multiple attack localization and identification in all-optical networks’. Proc. Int. Conf. Transparent Optical Networks (ICTON), 2005, vol. 1, pp. 101106.
    31. 31)
      • 31. Dahan, D., Mahlab, U., Teixeira, A., et al: ‘Optical performance monitoring for translucent/transparent optical networks’, IET Optoelectr., 2011, 5, (1), pp. 118.
    32. 32)
      • 32. Caballero, A., Borkowski, R., Zibar, D., et al: ‘Performance monitoring techniques supporting cognitive optical networking’. Proc. Int. Conf. Transparent Optical Networks (ICTON), 2013, paper Tu.B1.3.
    33. 33)
      • 33. Lee, J.H., Jung, D.K., Kim, C.H., et al: ‘OSNR monitoring technique using polarization-nulling method’, IEEE Photon. Technol. Lett., 2001, 13, (1), pp. 8890.
    34. 34)
      • 34. Anderson, T.B., Clarke, K., Dods, S.D., et al: ‘Robust, low cost, in-band optical signal to noise monitoring using polarization diversity’. Proc. of Optical Fiber Communication Conf. (OFC), 2007, paper OMM3.
    35. 35)
      • 35. Dahan, D., Mahlab, U., Levy, D.: ‘Stimulated brillouin scattering based in-band OSNR monitoring technique for 40 and 100 Gbps optical transparent networks’, Opt. Express, 2010, 18, (15), pp. 1576915783.
    36. 36)
      • 36. Dahan, D., Mahlab, U., Shachaf, Y.: ‘In-band optical signal-to-noise ratio monitoring technique based on Brillouin fiber ring laser’, Appl. Opt., 2013, 52, (7), pp. 14871496.
    37. 37)
      • 37. Annoni, A., Morichetti, F.: ‘Enhancing the sensitivity of interferometer based in-band OSNR monitoring by narrow band filtering’, J. Lightw. Technol., 2013, 31, (9), pp. 14471453.
    38. 38)
      • 38. Faruk, M.S., Mori, Y., Kikuchi, K.: ‘In-band estimation of optical signal-to-noise-ratio from equalized signals in digital coherent receivers’, Photonic J., 2014, 6, (1), pp. 19.
    39. 39)
      • 39. Dong, Z., Tao Lau, A.P., Lu, C.: ‘OSNR monitoring for QPSK and 16-QAM systems in presence of fiber nonlinearities for digital coherent receivers’, Opt. Express, 2012, 20, (17), pp. 1952019534.
    40. 40)
      • 40. Ip, E., Kahn, J.: ‘J. Compensation of dispersion and nonlinear impairments using digital backpropagation’, J. Lightw. Technol., 2008, 26, (20), pp. 34163425.
    41. 41)
      • 41. Oyama, T., Hoshida, T., Nakashima, H., et al: ‘Nonlinear compensation technologies for future optical communication systems’. Proc. SPIE 9389, Next-Generation Optical Communication: Components, Sub-Systems, and Systems IV, 2015, p. 93890I.
    42. 42)
      • 42. Guiomar, F.P., Reis, J.D., Teixeira, A.L., et al: ‘Mitigation of intra-channel nonlinearities using a frequency domain Volterra series equalizer’, Opt. Express, 2012, 20, (2), pp. 13601369.
    43. 43)
      • 43. Shulkind, G., Nazarathy, M.M.: ‘Nonlinear digital back propagation compensator for coherent optical OFDM based on factorizing the Volterra series transfer function’, Opt. Express, 2013, 21, (11), pp. 1314513161.
    44. 44)
      • 44. Ranzini, S.M., Parahyba, V.E., Vilela, T., et al: ‘Digital back-propagation ASIC design for high-speed coherent optical system’. Proc. of Microwave and Optoelectronics Conf. (IMOC), 2015, pp. 15.
    45. 45)
      • 45. Liga, G., Xu, T., Alvarado, A., et al: ‘On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission’, Opt. Express, 2014, 22, (24), pp. 3005330062.
    46. 46)
      • 46. Dahan, D., Mahlab, U.: ‘In-band OSNR system margin and overall link impairment level monitoring techniques using an optical coherent receiver’, J. Lightw. Technol., 2015, 33, (19), pp. 40634070.
    47. 47)
      • 47. Schmuck, H., Hehmann, J., Straub, M., et al: ‘Embedded OTDR techniques for cost-efficient fibre monitoring in optical access networks’. Proc. European Conf. on Optical Communications (ECOC), 2006, Mo3.5.4.
    48. 48)
      • 48. Otani, T., Horiuchi, Y., Kawazawa, T., et al: ‘Fault localization of optical WDM submarine cable networks using coherent-optical time-domain reflectometry’, Photonics Technol. Lett., 1998, 10, (7), pp. 10001002.
    49. 49)
      • 49. Devichara, D., Dahl, S., Gurusami, A., et al: ‘Low optical power embedded OTDR’. Proc. Optical Fiber Communications Conf. (OFC), 2015, paper W4D.4.
    50. 50)
      • 50. Ramaswami, R., Sivarajan, K.N.: ‘Optical networks, A practical perspective’ (Morgan Kaufmann, 2001, 2nd edn.).
    51. 51)
      • 51. Marcuse, D., Menyuk, C.R., Wai, P.K.A.: ‘Application of the Manakov-PMD Equation to studies of signal propagation in optical fiber with randomly varying birefringence’, J. Lightw. Technol., 1997, 15, (9), pp. 17351745.
    52. 52)
      • 52. Agrawal, G.P.: ‘Nonlinear fiber optics’ (Academic Press, 2013, 5th edn.).
    53. 53)
      • 53. Xu, T., Jacobsen, G., Popov, S., et al: ‘Chromatic dispersion compensation in coherent transmission system using digital filters’, Opt. Express, 2010, 18, pp. 1624316257.
    54. 54)
      • 54. Godard, D.: ‘Self-recovering equalization and carrier tracking in two dimensional data communication systems’, IEEE Trans. Commun., 1980, 28, (11), pp. 18671875.
    55. 55)
      • 55. Louchet, H., Kuzmin, K., Richter, A.: ‘Improved DSP algorithms for coherent 16-QAM transmission’. Proc. European Conf. on Optical Communication (ECOC), 2008, paper TU1.E.6.
    56. 56)
      • 56. Viterbi, A.J., Viterbi, A.N.: ‘Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission’, IEEE Trans. Inf. Theory, 1983, 29, (4), pp. 543551.
    57. 57)
      • 57. Fatadin, I., Ives, D., Savory, S.J.: ‘Laser linewidth tolerance for 16-QAM coherent optical systems using QPSK partitioning’, IEEE Photon. Technol. Lett., 2010, 22, (9), pp. 631633.
    58. 58)
      • 58. Fatadin, I., Savory, S.J.: ‘Compensation of frequency offset for 16-QAM optical coherent system using QPSK partitioning’, IEEE Photon. Technol. Lett., 2011, 23, (17), pp. 12461248.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2016.0150
Loading

Related content

content/journals/10.1049/iet-opt.2016.0150
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address