http://iet.metastore.ingenta.com
1887

Investigation of an optically induced superstrate plasma for tuning microstrip antennas

Investigation of an optically induced superstrate plasma for tuning microstrip antennas

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Optically induced electron–hole plasmas in silicon are used to perform radiation pattern tuning. The antenna is a slot loaded microstrip patch and the effect of illumination is shown to produce beam switching in the radiation patterns of certain modes while other modes are left unaffected. The structure is specifically designed to make the best use of currently available miniature laser sources to form a compact tunable package. Modelled and measured results for tuning of the radiation patterns and frequency response are presented. The effect of the losses incurred by the plasma along with the losses in the optically transparent ground plane are quantified in both simulation and measurement. This forms the basis for designing other types of optically tunable miniature antennas based on the structure presented.

References

    1. 1)
      • 1. Christodoulou, C.G., Tawk, Y., Lane, S.A., et al: ‘Reconfigurable antennas for wireless and space applications’, Proc. IEEE, 2012, 100, (7), pp. 22502261.
    2. 2)
      • 2. Lucyszyn, S. (Ed.): ‘Advanced RF MEMS’ (Cambridge University Press, 2010).
    3. 3)
      • 3. Butler, J.K., Tran-Fu, W., Scott, M.W.: ‘Nonuniform layer model of a millimeter-wave phase shifter’, IEEE Trans. Microw. Theory Tech., 1986, 34, (1), pp. 147155.
    4. 4)
      • 4. Kowalczuk, E.K., Panagamuwa, C.J., Seager, R.D., et al: ‘Characterising the linearity of an optically controlled photoconductive microwave switch’. Loughborough Antennas and Propagation Conf., November 2010, pp. 597600.
    5. 5)
      • 5. Auston, D.H., Cheung, K.P., Smith, P.R.: ‘Picosecond photoconducting Hertzian dipoles’, Appl. Phys. Lett., 1984, 45, (3), p. 284.
    6. 6)
      • 6. Lee, C., Mak, P., DeFonzo, A.: ‘Optical control of millimeter-wave propagation in dielectric waveguides’, IEEE Quantum Electron., 1980, 16, (03), pp. 277288.
    7. 7)
      • 7. Dawson, M.D., Neil, M.A.A.: ‘Micro-pixellated LEDs for science and instrumentation’, J. Appl. Phys., 2008, 41, (9), pp. 12.
    8. 8)
      • 8. Edwards, R.N., Nunnally, W.C., Dickson, W.D., et al: ‘Investigation of photoconductive silicon as a reconfigurable antenna’. North American Conf. Smart Structures and Materials, January 1993, pp. 344353.
    9. 9)
      • 9. Liu, D., Charette, D., Bergeron, M., et al: ‘Structurally embedded photoconductive silicon bowtie antenna’, IEEE Photonics Technol. Lett., 1998, 10, (5), pp. 716718.
    10. 10)
      • 10. Gamlath, C.D., Collett, M.A., Cryan, M.J.: ‘Investigation of novel architectures for tunable antennas based on optically generated plasmas’. 45th European Microwave Conf., Paris, September 2015.
    11. 11)
      • 11. Tawk, Y., Albrecht, A.R., Hemmady, S., et al: ‘Optically pumped frequency reconfigurable antenna design’, IEEE Antennas Wirel. Propag. Lett., 2010, 9, pp. 280283.
    12. 12)
      • 12. Panagamuwa, C.J., Chauraya, A., Vardaxoglou, J.C.: ‘Frequency and beam reconfigurable antenna using photoconducting switches’, IEEE Trans. Antennas Propag., 2006, 54, (2), pp. 449454.
    13. 13)
      • 13. Guo, Y.X., Luk, K.F.L.: ‘Dual band slot loaded short circuited patch antenna’, Electron. Lett., 2004, 36, (4), pp. 289291.
    14. 14)
      • 14. Dissanayake, T., Esselle, K.: ‘Prediction of the notch frequency of slot loaded printed UWB antennas’, IEEE Antennas Propag., 2007, 55, (11), pp. 33203325.
    15. 15)
      • 15. Maci, S., Gentili, G.B.: ‘Dual-band slot-loaded patch antenna’, IEEE Antennas Propagation, 1995, 142, (3), pp. 225232.
    16. 16)
      • 16. Lee, J., Horng, T., Alexopoulos, N.: ‘Analysis of cavity-backed aperture antennas with a dielectric overlay’, Antennas Propag., 1994, 42, (11), pp. 15561562.
    17. 17)
      • 17. Jackson, D., Alexopoulos, N.: ‘Gain enhancement methods for printed circuit antennas’, IEEE Trans. Antennas Propag., 1985, 33, (9), pp. 976987.
    18. 18)
      • 18. Carver, K., Mink, J.: ‘Microstrip antenna technology’, IEEE Trans. Antennas Propag., 1981, 29, (1), pp. 224.
    19. 19)
      • 19. Adams, A.: ‘Flush mounted rectangular cavity slot antennas – theory and design’, IEEE Trans. Antennas Propag., 1967, 15, (3), pp. 342351.
    20. 20)
      • 20. Gamlath, C.D., Benton, D.M., Cryan, M.J.: ‘Microwave properties of an inhomogeneous optically illuminated plasma in a microstrip gap’, IEEE Microw. Theory Tech., 2015, 63, (2), pp. 374383.
    21. 21)
      • 21. Kerr, A.R.: ‘Surface impedance of superconductors and normal conductors in EM simulators’. MMA Memo 21 May 1999.
    22. 22)
      • 22. Collin, R.: ‘Foundations for microwave engineering’ (McGraw–Hill, 2001).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2016.0133
Loading

Related content

content/journals/10.1049/iet-opt.2016.0133
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address