access icon free Optical scheme of conversion of a positionally encoded decimal digit to frequency encoded Boolean form using Mach–Zehnder interferometer-based semiconductor optical amplifier

The conversion of decimal number to its equivalent binary one and vice-versa is very important in the field of electronic/optical computing and data processing system. There are so many well established methods for this conversion. In this study, the authors propose a new scheme for optical conversion of a decimal number to its frequency encoded binary equivalent using tree architecture-based system and frequency-encoding principle. To implement the above conversion, some optical non-linear switches, such as Mach–Zehnder interferometer-based semiconductor optical amplifier (SOA), reflecting SOA based on SOA, have been used to get frequency encoded response.

Inspec keywords: optical frequency conversion; encoding; semiconductor optical amplifiers; Mach-Zehnder interferometers; optical switches; optical information processing

Other keywords: positionally encoded decimal digit; frequency encoded Boolean form; optical nonlinear switches; electronic computing; tree architecture; optical computing; optical conversion; SOA; data processing; semiconductor optical amplifier; Mach-Zehnder interferometer

Subjects: Optical switches; Lasing action in semiconductors; Optical harmonic generation, frequency conversion, parametric oscillation and amplification; Semiconductor lasers; Laser beam modulation, pulsing and switching; mode locking and tuning; Optical switches; Optical harmonic generation, frequency conversion, parametric oscillation and amplification; Codes; Optical information, image formation and analysis; Optical, image and video signal processing; Design of specific laser systems; Laser beam modulation, pulsing and switching; mode locking and tuning; Optical interferometry

References

    1. 1)
      • 25. Wu, W., Campbell, S., Zhou, S., et al: ‘Polarization-encoded optical logic operations in photorefractive media’, Opt. Lett., 1993, 18, (20), pp. 17421744, doi: 10.1364/OL.18.001742.
    2. 2)
      • 17. Guo, L.Q., Connelly, M.J.: ‘A Poincare approach to investigate nonlinear polarization rotation in semiconductor optical amplifiers and its application to all-optical wavelength conversion’. Proc. SPIE 6783, Optical Transmission, Switching, and Subsystems V, 26 November 2007, vol. 678325, doi: 10.1117/12.745453.
    3. 3)
      • 8. Chandra, S.K., Mukhopadhyay, S.: ‘An all-optical approach of implementing a different kind of phase encoded XOR and XNOR logic operations with the help of four wave mixing in SOA’, Optik - Int. J. Light Electron Opt., 2013, 124, (6), pp. 505507, doi: 10.1016/j.ijleo.2011.12.048.
    4. 4)
      • 4. Fujisawa, T., Koshiba, M.: ‘All-optical logic gates based on nonlinear slot-waveguide couplers’, J. Opt. Soc. Am. B, 2006, 23, (4), pp. 684691, doi: 10.1364/JOSAB.23.000684.
    5. 5)
      • 10. Chandra, S.K., Biswas, S., Mukhopadhyay, S.: ‘Phase-encoded all-optical reconfigurable integrated multilogic unit using phase information processing of four-wave mixing in semiconductor optical amplifier’, IET Optoelectron., 2016, 10, (1), pp. 16, doi: 10.1049/iet-opt.2014.0066.
    6. 6)
      • 14. Roya, J.N., Maitib, A.K., Samanta, D., et al: ‘Tree-net architecture for integrated all-optical arithmetic operations and data comparison scheme with optical nonlinear material’, Opt. Switch. Netw., 2007, 4, (3–4), pp. 231237, http://dx.doi.org/10.1016/j.osn.2007.08.003.
    7. 7)
      • 12. Roy, J.N., Maiti, A.K., Mukhopadhyay, S.: ‘Exploitation of nonlinear material based tree-net architecture in all-optical demultiplexing scheme’, J. Opt., 2007, 36, (1), pp. 17, doi: 10.1007/BF03354811.
    8. 8)
      • 27. Garai, S.K., Pal, A., Mukhopadhyay, S.: ‘All-optical frequency-encoded inversion operation with tristate logic using reflecting semiconductor optical amplifiers’, Optik - Int. J. Light Electron Opt., 2010, 121, (16), pp. 14621465, http://dx.doi.org/10.1016/j.ijleo.2009.02.011.
    9. 9)
      • 2. Sen, S., Mukhopadhyay, S.: ‘A noble technique of using a specially cut LiNbO3 for achieving a greater amount phase difference between the components of light rays’, Optik - Int. J. Light Electron Opt., 2013, 124, (11), pp. 10111013, doi: 10.1016/j.ijleo.2013.01.021.
    10. 10)
      • 28. Chakarborty, B., Mukhophahyay, S.: ‘All-optical method of developing half and full subtractor by the use of phase encoding principle’, Optik - Int. J. Light Electron Opt., 2011, 122, (24), pp. 22072210, http://dx.doi.org/10.1016/j.ijleo.2011.01.014.
    11. 11)
      • 6. Connelly, M.J.: ‘Semiconductor optical amplifiers’ (Kluwer Academic Publishers, 2002).
    12. 12)
      • 21. Spyropoulou, M., Pleros, N., Miliou, A.: ‘SOA-MZI-based nonlinear optical signal processing: a frequency domain transfer function for wavelength conversion, clock recovery, and packet envelope detection’, IEEE J. Quantum Electron., 2011, 47, (1), pp. 4049, doi: 10.1109/JQE.2010.2071411.
    13. 13)
      • 9. Wang, D.-X., Buck, J.A., Brennan, K., et al: ‘Numerical model of wavelength conversion through cross-gain modulation in semiconductor optical amplifiers’, Appl. Opt., 2006, 45, (19), pp. 47014708, doi: 10.1364/AO.45.004701.
    14. 14)
      • 29. Wong, K.W., Cheng, L.M., Poon, M.C.: ‘Design of digital–optical processors by using both intensity and polarization–encoding schemes’, Appl. Opt., 1992, 31, (17), pp. 32253232, doi: 10.1364/AO.31.003225.
    15. 15)
      • 23. Wu, J.-W., Sarma, A.K.: ‘Ultrafast all-optical XOR logic gate based on a symmetrical Mach–Zehnder interferometer employing SOI waveguides’, Opt. Commun., 2010, 283, (14), pp. 29142917, doi: 10.1016/j.optcom.2010.02.045.
    16. 16)
      • 11. Mukhopadhyay, S.: ‘An optical conversion systems from binary to decimal and decimal to binary’, Opt. Commun., 1990, 76, (5–6), pp. 309312, doi: 10.1016/0030-4018(90)90257-T.
    17. 17)
      • 5. Obermann, K., Kindt, S., Breuer, D., et al: ‘Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers’, J. Lightwave Technol., 2002, 16, (1), pp. 7885, doi: 10.1109/50.654987.
    18. 18)
      • 1. Dey, S., Mukhopadhyay, S.: ‘All-optical high frequency clock pulse generator using the feedback mechanism in Toffoli gate with Kerr material’, J. Nonlinear Opt. Phys. Mater., Matter, 2016, 25, p. 1650012, doi: 10.1142/S0218863516500120.
    19. 19)
      • 20. Singh, S., Kaler, R.S.: ‘All optical wavelength converters based on cross phase modulation in SOA-MZI configuration’, Optik - Int. J. Light Electron Opt., 2007, 118, (8), pp. 390394, http://dx.doi.org/10.1016/j.ijleo.2006.04.010.
    20. 20)
      • 16. Guo, L.Q., Connelly, M.J.: ‘A novel approach to all-optical wavelength conversion by utilizing a reflective semiconductor optical amplifier in a co-propagation scheme’, Opt. Commun., 2008, 281, (17), pp. 44704473, http://dx.doi.org/10.1016/j.optcom.2008.04.054.
    21. 21)
      • 15. Dutta, S., Mukhopadhyay, S.: ‘All optical frequency encoding method for converting a decimal number to its equivalent binary number using tree architecture’, Optik - Int. J. Light Electron Opt., 2011, 122, (2), pp. 125127, doi: 10.1016/j.ijleo.2009.11.018.
    22. 22)
      • 26. Chakraborty, B., Mukhopadhyay, S.: ‘Alternative approach of conducting phase-modulated all-optical logic gates’, Opt. Eng., 2009, 48, (3), p. 035201, doi:10.1117/1.3099711.
    23. 23)
      • 18. Cho, K.Y., Choi, B.S., et al: ‘25.78-Gb/s operation of RSOA for next-generation optical access networks’, IEEE Photonics Technol. Lett., 2011, 23, (8), pp. 495497, doi: 10.1109/LPT.2011.2112759.
    24. 24)
      • 3. Yabu, T., Geshiro, M., Kitamura, T., et al: ‘All-optical logic gates containing a two-mode nonlinear waveguide’, IEEE J. Quantum Electron., 2002, 38, (1), pp. 3746, doi: 10.1109/3.973317.
    25. 25)
      • 19. Ghosh, B., Pal, R.R., Mukhopadhyay, S.: ‘A new approach to all-optical half-adder by utilizing semiconductor optical amplifier based MZI wavelength converter’, Optik – Int. J. Light Electron Opt., 2011, 122, (20), pp. 18041807, http://dx.doi.org/10.1016/j.ijleo.2010.10.042.
    26. 26)
      • 13. Maiti, A.K., Roy, J.N., Mukhopadhyay, S.: ‘All-optical conversion scheme from binary to its MTN form with the help of nonlinear material based tree-net architecture’, Chin. Opt. Lett., 2007, 5, (8), pp. 480483, doi: 1671-7694/2007/080480-04.
    27. 27)
      • 22. Garai, S.K., Mukhopadhyay, S.: ‘A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier’, Opt. Laser Technol., 2010, 42, (5), pp. 11221127, http://dx.doi.org/10.1016/j.optlastec.2010.02.005.
    28. 28)
      • 7. Dutta, N.K., Wang, Q.: ‘Semiconductor optical amplifier’ (World Scientific Publishing, Singapore, 2006).
    29. 29)
      • 24. Garai, S.K., Mukhopadhyay, S.: ‘Analytical approach of developing the expression of output of all-optical frequency encoded different logical units and a way-out to implement the logic gates’, Opt. Fiber Technol., 2010, 16, (4), pp. 250256, doi: 10.1016/j.yofte.2010.05.005.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2016.0078
Loading

Related content

content/journals/10.1049/iet-opt.2016.0078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading