Optical scheme of conversion of a positionally encoded decimal digit to frequency encoded Boolean form using Mach–Zehnder interferometer-based semiconductor optical amplifier

Optical scheme of conversion of a positionally encoded decimal digit to frequency encoded Boolean form using Mach–Zehnder interferometer-based semiconductor optical amplifier

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Optoelectronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The conversion of decimal number to its equivalent binary one and vice-versa is very important in the field of electronic/optical computing and data processing system. There are so many well established methods for this conversion. In this study, the authors propose a new scheme for optical conversion of a decimal number to its frequency encoded binary equivalent using tree architecture-based system and frequency-encoding principle. To implement the above conversion, some optical non-linear switches, such as Mach–Zehnder interferometer-based semiconductor optical amplifier (SOA), reflecting SOA based on SOA, have been used to get frequency encoded response.


    1. 1)
      • 1. Dey, S., Mukhopadhyay, S.: ‘All-optical high frequency clock pulse generator using the feedback mechanism in Toffoli gate with Kerr material’, J. Nonlinear Opt. Phys. Mater., Matter, 2016, 25, p. 1650012, doi: 10.1142/S0218863516500120.
    2. 2)
      • 2. Sen, S., Mukhopadhyay, S.: ‘A noble technique of using a specially cut LiNbO3 for achieving a greater amount phase difference between the components of light rays’, Optik - Int. J. Light Electron Opt., 2013, 124, (11), pp. 10111013, doi: 10.1016/j.ijleo.2013.01.021.
    3. 3)
      • 3. Yabu, T., Geshiro, M., Kitamura, T., et al: ‘All-optical logic gates containing a two-mode nonlinear waveguide’, IEEE J. Quantum Electron., 2002, 38, (1), pp. 3746, doi: 10.1109/3.973317.
    4. 4)
      • 4. Fujisawa, T., Koshiba, M.: ‘All-optical logic gates based on nonlinear slot-waveguide couplers’, J. Opt. Soc. Am. B, 2006, 23, (4), pp. 684691, doi: 10.1364/JOSAB.23.000684.
    5. 5)
      • 5. Obermann, K., Kindt, S., Breuer, D., et al: ‘Performance analysis of wavelength converters based on cross-gain modulation in semiconductor-optical amplifiers’, J. Lightwave Technol., 2002, 16, (1), pp. 7885, doi: 10.1109/50.654987.
    6. 6)
      • 6. Connelly, M.J.: ‘Semiconductor optical amplifiers’ (Kluwer Academic Publishers, 2002).
    7. 7)
      • 7. Dutta, N.K., Wang, Q.: ‘Semiconductor optical amplifier’ (World Scientific Publishing, Singapore, 2006).
    8. 8)
      • 8. Chandra, S.K., Mukhopadhyay, S.: ‘An all-optical approach of implementing a different kind of phase encoded XOR and XNOR logic operations with the help of four wave mixing in SOA’, Optik - Int. J. Light Electron Opt., 2013, 124, (6), pp. 505507, doi: 10.1016/j.ijleo.2011.12.048.
    9. 9)
      • 9. Wang, D.-X., Buck, J.A., Brennan, K., et al: ‘Numerical model of wavelength conversion through cross-gain modulation in semiconductor optical amplifiers’, Appl. Opt., 2006, 45, (19), pp. 47014708, doi: 10.1364/AO.45.004701.
    10. 10)
      • 10. Chandra, S.K., Biswas, S., Mukhopadhyay, S.: ‘Phase-encoded all-optical reconfigurable integrated multilogic unit using phase information processing of four-wave mixing in semiconductor optical amplifier’, IET Optoelectron., 2016, 10, (1), pp. 16, doi: 10.1049/iet-opt.2014.0066.
    11. 11)
      • 11. Mukhopadhyay, S.: ‘An optical conversion systems from binary to decimal and decimal to binary’, Opt. Commun., 1990, 76, (5–6), pp. 309312, doi: 10.1016/0030-4018(90)90257-T.
    12. 12)
      • 12. Roy, J.N., Maiti, A.K., Mukhopadhyay, S.: ‘Exploitation of nonlinear material based tree-net architecture in all-optical demultiplexing scheme’, J. Opt., 2007, 36, (1), pp. 17, doi: 10.1007/BF03354811.
    13. 13)
      • 13. Maiti, A.K., Roy, J.N., Mukhopadhyay, S.: ‘All-optical conversion scheme from binary to its MTN form with the help of nonlinear material based tree-net architecture’, Chin. Opt. Lett., 2007, 5, (8), pp. 480483, doi: 1671-7694/2007/080480-04.
    14. 14)
      • 14. Roya, J.N., Maitib, A.K., Samanta, D., et al: ‘Tree-net architecture for integrated all-optical arithmetic operations and data comparison scheme with optical nonlinear material’, Opt. Switch. Netw., 2007, 4, (3–4), pp. 231237,
    15. 15)
      • 15. Dutta, S., Mukhopadhyay, S.: ‘All optical frequency encoding method for converting a decimal number to its equivalent binary number using tree architecture’, Optik - Int. J. Light Electron Opt., 2011, 122, (2), pp. 125127, doi: 10.1016/j.ijleo.2009.11.018.
    16. 16)
      • 16. Guo, L.Q., Connelly, M.J.: ‘A novel approach to all-optical wavelength conversion by utilizing a reflective semiconductor optical amplifier in a co-propagation scheme’, Opt. Commun., 2008, 281, (17), pp. 44704473,
    17. 17)
      • 17. Guo, L.Q., Connelly, M.J.: ‘A Poincare approach to investigate nonlinear polarization rotation in semiconductor optical amplifiers and its application to all-optical wavelength conversion’. Proc. SPIE 6783, Optical Transmission, Switching, and Subsystems V, 26 November 2007, vol. 678325, doi: 10.1117/12.745453.
    18. 18)
      • 18. Cho, K.Y., Choi, B.S., et al: ‘25.78-Gb/s operation of RSOA for next-generation optical access networks’, IEEE Photonics Technol. Lett., 2011, 23, (8), pp. 495497, doi: 10.1109/LPT.2011.2112759.
    19. 19)
      • 19. Ghosh, B., Pal, R.R., Mukhopadhyay, S.: ‘A new approach to all-optical half-adder by utilizing semiconductor optical amplifier based MZI wavelength converter’, Optik – Int. J. Light Electron Opt., 2011, 122, (20), pp. 18041807,
    20. 20)
      • 20. Singh, S., Kaler, R.S.: ‘All optical wavelength converters based on cross phase modulation in SOA-MZI configuration’, Optik - Int. J. Light Electron Opt., 2007, 118, (8), pp. 390394,
    21. 21)
      • 21. Spyropoulou, M., Pleros, N., Miliou, A.: ‘SOA-MZI-based nonlinear optical signal processing: a frequency domain transfer function for wavelength conversion, clock recovery, and packet envelope detection’, IEEE J. Quantum Electron., 2011, 47, (1), pp. 4049, doi: 10.1109/JQE.2010.2071411.
    22. 22)
      • 22. Garai, S.K., Mukhopadhyay, S.: ‘A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier’, Opt. Laser Technol., 2010, 42, (5), pp. 11221127,
    23. 23)
      • 23. Wu, J.-W., Sarma, A.K.: ‘Ultrafast all-optical XOR logic gate based on a symmetrical Mach–Zehnder interferometer employing SOI waveguides’, Opt. Commun., 2010, 283, (14), pp. 29142917, doi: 10.1016/j.optcom.2010.02.045.
    24. 24)
      • 24. Garai, S.K., Mukhopadhyay, S.: ‘Analytical approach of developing the expression of output of all-optical frequency encoded different logical units and a way-out to implement the logic gates’, Opt. Fiber Technol., 2010, 16, (4), pp. 250256, doi: 10.1016/j.yofte.2010.05.005.
    25. 25)
      • 25. Wu, W., Campbell, S., Zhou, S., et al: ‘Polarization-encoded optical logic operations in photorefractive media’, Opt. Lett., 1993, 18, (20), pp. 17421744, doi: 10.1364/OL.18.001742.
    26. 26)
      • 26. Chakraborty, B., Mukhopadhyay, S.: ‘Alternative approach of conducting phase-modulated all-optical logic gates’, Opt. Eng., 2009, 48, (3), p. 035201, doi:10.1117/1.3099711.
    27. 27)
      • 27. Garai, S.K., Pal, A., Mukhopadhyay, S.: ‘All-optical frequency-encoded inversion operation with tristate logic using reflecting semiconductor optical amplifiers’, Optik - Int. J. Light Electron Opt., 2010, 121, (16), pp. 14621465,
    28. 28)
      • 28. Chakarborty, B., Mukhophahyay, S.: ‘All-optical method of developing half and full subtractor by the use of phase encoding principle’, Optik - Int. J. Light Electron Opt., 2011, 122, (24), pp. 22072210,
    29. 29)
      • 29. Wong, K.W., Cheng, L.M., Poon, M.C.: ‘Design of digital–optical processors by using both intensity and polarization–encoding schemes’, Appl. Opt., 1992, 31, (17), pp. 32253232, doi: 10.1364/AO.31.003225.

Related content

This is a required field
Please enter a valid email address