Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Generation of optical picosecond pulses with monolithic colliding-pulse mode-locked lasers containing a chirped double-quantum-well active region

In this study, the authors present experimental results on 6mm long monolithic passively colliding-pulse mode-locked (CPM) lasers. The AlGaAs-based devices with In x Ga1−x As y P1−y double-quantum-well (DQW) active regions emit between 860 and 880nm. To optimise the laser performance and to shorten the pulses the optical gain is spectrally broadened to increase the number of longitudinal lasing modes by using a chirped DQW structure where the In-content of the QWs differs by Δx = 0.08. Lasers having the chirped DQW with lasers having a conventional, unchirped DQW active region are compared. The mode locking operation is investigated in dependence on gain current, absorber voltage and absorber length. According to the experimental results, the lasers with the chirped DQW exhibit an overall better performance and generate shorter pulses with higher average optical output powers over a wider range of parameters. For an optimum set of parameters, the generated pulses have a full width at half maximum of the autocorrelation function of 1.9 ps at a repetition frequency of 12.9GHz.

References

    1. 1)
      • 29. Williams, K.A., Thompson, M.G., White, I.H.: ‘Long-wavelength mononolithic mode-locked diode lasers’, New. J. Phys., 2004, 6, (179), pp. 132.
    2. 2)
      • 25. Kéfélian, F., O'Donoghue, S., Todaro, M.T., et al: ‘RF linewidth in monolithic passively mode-locked semiconductor laser’, IEEE Photon. Technol. Lett., 2008, 20, (16), pp. 14051407.
    3. 3)
      • 20. Hakki, B.W., Paoli, T.L.: ‘Gain spectra in GaAs double-heterostructure injection lasers’, Appl. Phys. Let., 1975, 46, (3), pp. 12991306.
    4. 4)
      • 2. Onodera, N., Ito, H., Inaba, H.: ‘Fourier-transform-limited, single-mode picosecond optical pulse generation by a distributed feedback InGaAsP diode laser’, Appl. Phys. Lett., 1984, 45, (8), pp. 843845.
    5. 5)
      • 26. Sala, K., Kenney-Wallace, G., Hall, G.: ‘CW autocorrelation measurements of picosecond laser pulses’, IEEE J. Quantum Electron., 1980, 16, (9), pp. 990996.
    6. 6)
      • 6. van Exter, M., Fattinger, C.h., Grischkowsky, D.: ‘Terahertz time-domain spectroscopy of water vapor’, Opt. Lett., 1989, 14, (20), pp. 11281130.
    7. 7)
      • 9. Vasil'ev, P.: ‘Ultrafast diode lasers – fundamentals and applications’ (Artech House, Boston London, UK, 1995, 1st edn.).
    8. 8)
      • 10. Ippen, E.P., Eilenberger, D.J., Dixon, R.W.: ‘Picosecond pulse generation by passive mode locking of diode lasers’, Appl. Phys. Lett., 1980, 37, (3), pp. 267269.
    9. 9)
      • 7. Bartels, A., Cerna, R., Kistner, C., et al: ‘Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling’, Rev. Sci. Instrum., 2007, 78, pp. 035107-1035107-8.
    10. 10)
      • 18. Arahira, A., Matsui, Y., Ogawa, Y.: ‘Mode-locking at very high repetition rates more than terahertz in passively mode-locked distributed-Bragg-reflector laser diodes’, IEEE J. Quantum Electron., 1996, 12, (1), pp. 12111224.
    11. 11)
      • 19. Wenzel, H., Klehr, A., Schwertfeger, S., et al: ‘Compact sources for the generation of high-peak power wavelength-stabilized laser pulses in the picoseconds and nanoseconds ranges’, High-Power Diode Laser Technol. Appl. X, Proc. of SPIE, 2012, 8241, pp. 82410V-182410V-9.
    12. 12)
      • 11. Tandoi, G., Javaloyes, J., Avrutin, E., et al: ‘Subpicosecond colliding pulse mode locking at 126 GHz in monolithic GaAs/AlGaAs quantum well lasers: experiments and theory’, IEEE J. Sel. Top. Quantum Electron., 2013, 19, (4), pp. 10771084.
    13. 13)
      • 8. Jördens, C., Schlauch, T., Li, M., et al: ‘All-semiconductor laser driven terahertz time-domain spectrometer’, Appl. Phys. B, 2008, 93, (2), pp. 515520.
    14. 14)
      • 24. Paschotta, P.: ‘Noise of mode-locked lasers’, Appl. Phys. B, 2004, 79, (2), pp. 153173.
    15. 15)
      • 3. Diddams, S.A., Jones, D.J., Ye, J., et al: ‘Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb’, Phys. Rev. Lett., 2000, 84, (22), pp. 51025105.
    16. 16)
      • 1. Kuramoto, M., Kitajima, N., Guo, H., et al: ‘Two-photon fluorescence bio imaging with an all-semiconductor laser picosecond pulse source’, Opt. Lett., 2007, 32, (18), pp. 27262728.
    17. 17)
      • 27. Chen, Y.K., Wu, M.C.: ‘Monolithic colliding-pulse mode-locked quantum well lasers’, IEEE J. Quantum Electron., 1992, 28, (10), pp. 21762185.
    18. 18)
      • 30. Thompson, M.G., Rae, A.R., Penty, R.V., et al: ‘Absorber length optimisation for sub-picosecond pulse generation and ultra-low jitter performance in passively mode-locked 1.3 µm quantum-dot laser diodes’. Proc. Int. Conf., Optical Fibre Communications Conf., Anaheim, California, United States, 5 March 2006.
    19. 19)
      • 4. Federici, J.F., Schulkin, B., Huang, F., et al: ‘THz imaging and sensing for security applications – explosives, weapons and drugs’, Semicond. Sci. Technol., 2005, 20, (7), pp. S266S280.
    20. 20)
      • 5. Jepsen, P.U., Cooke, D.G., Koch, M.: ‘Terahertz spectroscopy and imaging – modern techniques and applications’, Laser Photonics Rev., 2011, 5, (1), pp. 124166.
    21. 21)
      • 15. Javaloyes, J., Balle, S.: ‘Anticolliding design for monolithic passively mode-locked semiconductor laser’, Opt. Lett., 2011, 36, (22), pp. 44074409.
    22. 22)
      • 23. Miller, D.A.B., Chemla, D.S., Damen, T.C.: ‘Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect’, Phys. Rew. Lett., 1984, 53, (22), pp. 21732176.
    23. 23)
      • 17. Kaiser, R., Hüttle, B., Heinrich, H., et al: ‘Tunable monolithic mode-locked lasers on InP with low timing jitter’, IEEE Photon. Technol. Lett., 2003, 15, (5), pp. 634636.
    24. 24)
      • 14. Derickson, D.J., Helkey, R.J., Mar, A., et al: ‘Short pulse generation using multisegment mode-locked semiconductor lasers’, IEEE J. Quantum Electron., 1992, 28, (10), pp. 21862202.
    25. 25)
      • 28. Bischoff, S., Mork, J., Franck, T., et al: ‘Monolithic colliding pulse mode-locked semiconductor lasers’, Quantum Semiclass. Opt., 1997, 9, (5), pp. 655674.
    26. 26)
      • 22. Blood, P., Lewis, G.M., Smowton, P.M., et al: ‘Characterization of semiconductor laser gain media by the segmented contact method’, IEEE J. Sel. Top. Quantum Electron., 2003, 9, (5), pp. 12751282.
    27. 27)
      • 21. Wenzel, H.: ‘Green's function based simulation of the optical spectrum of multisection lasers’, IEEE J. Sel. Top. Quantum Electron., 2003, 9, (3), pp. 865871.
    28. 28)
      • 12. Zhuang, J.-P., Pusino, V., Ding, Y., et al: ‘Experimental investigation of anti-colliding pulse mode-locked semiconductor lasers’, Opt. Lett., 2015, 40, (4), pp. 617620.
    29. 29)
      • 16. Chen, Y.K., Wu, M.C., Tanbun-Ek, T., et al: ‘Subpicosecond monolithic colliding-pulse mode-locked multiple quantum well lasers’, Appl. Phys. Lett., 1991, 56, (12), pp. 12531255.
    30. 30)
      • 13. Stolarz, P.M., Pusino, V., Akbar, J., et al: ‘High-power and low-noise mode-locking operation of Al-quaternary laser diodes’, IEEE J. Sel. Top. Quantum Electron., 2015, 21, (6), pp. 10771083.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-opt.2016.0070
Loading

Related content

content/journals/10.1049/iet-opt.2016.0070
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address